
 

 

i 

Final report of ITS Center project: Hampton Roads simulation 

For the Center for ITS Implementation Research  

A U.S. DOT University Transportation Center  

“Development of ITS Evaluation Test-Bed Using Microscopic Simulation – City of 

Hampton Case Study”  

 

Principal Investigator: 

Byungkyu “Brian” Park 

 

 

August 2003 

 

Disclaimer 

The contents of this report reflect the views of the authors, who are responsible for the facts and the 

accuracy of the information presented herein. This document is disseminated under the sponsorship of the 

Department of Transportation, University Transportation Centers Program, in the interest of information 

exchange. The U.S. Government assumes no liability for the contents or use thereof. 



 

 

ii 

 

 

 

 

 

Development of ITS Evaluation Test-Bed Using        
Microscopic Simulation – City of Hampton Case Study 
 

 

By: 

Ilsoo Yun 

Byungkyu “Brian” Park 

 

A Research Project Report 

For the Center for ITS Implementation Research (ITS)  
A U.S. DOT University Transportation Center 
 

Ilsoo Yun 

Email: iy6m@virginia.edu 

 

Dr. Byungkyu “Brain” Park 

Department of Civil Engineering 

Email: bpark@virginia.edu  

 

Research Report No. UVACTS-15-0-45 
August 2003 



 

 

iii 

Center for Transportation Studies at the University of Virginia produces outstanding transportation 

professionals, innovative research results and provides important public service. The Center for 

Transportation Studies is committed to academic excellence, multi-disciplinary research and to developing 

state-of-the-art facilities. Through a partnership with the Virginia Department of Transportation’s (VDOT) 

Research Council (VTRC), CTS faculty hold joint appointments, VTRC research scientists teach 

specialized courses, and graduate student work is supported through a Graduate Research Assistantship 

Program. CTS receives substantial financial support from two federal University Transportation Center 

Grants: the Mid-Atlantic Universities Transportation Center (MAUTC), and through the National ITS 

Implementation Research Center (ITS Center). Other related research activities of the faculty include 

funding through FHWA, NSF, US Department of Transportation, VDOT, other governmental agencies and 

private companies.  

 

Disclaimer: The contents of this report reflect the views of the authors, who are responsible for the facts 

and the accuracy of the information presented herein.  This document is disseminated under the 

sponsorship of the Department of Transportation, University Transportation Centers Program, in the 

interest of information exchange.  The U.S. Government assumes no liability for the contents or use 

thereof. 

CTS Website         Center for Transportation Studies 

http://cts.virginia.edu                University of Virginia 

                                                                           351 McCormick Road, P.O. Box 400742 

                        Charlottesville, VA 22904-4742 

                                         434-924-6362 



 

 

iv 

 

1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. 

VACTS-15-0-45   

4. Title and Subtitle 5. Report Date 

Development of ITS Evaluation Test-Bed Using Microscopic Simulation - City of 
Hampton Case Study 

August, 2003 

 6. Performing Organization Code 

  

7. Author(s) 

Ilsoo Yun and Byungkyu “Brian” Park 

8. Performing Organization Report No. 
  

  
 

9. Performing Organization and Address 10. Work Unit No. (TRAIS) 

Center for Transportation Studies  

University of Virginia 11. Contract or Grant No. 

PO Box 400742 
Charlottesville, VA 22904-7472 

 

12. Sponsoring Agencies' Name and Address 13. Type of Report and Period Covered 

Office of University Programs, Research and Special Programs 

Administration 

US Department of Transportation 

400 Seventh Street, SW 

Washington DC 20590-0001 

 Final Report 

  14. Sponsoring Agency Code 

   

15.  Supplementary Notes 

 
 
16. Abstract 

Microscopic traffic simulation models are very powerful tools as they provide inexpensive, fast, and risk-free evaluation environment. 

They not only provide the simulation of scenarios that cannot be practically tested in real world conditions, but also allow various 

network wide performance measures including travel times, delay and emissions. In addition, traffic simulation models are also being 

used extensively in Intelligent Transportation Systems (ITS) researches. However, there is a need to develop appropriate methodology 

and gain experience in practical usage of traffic simulation models to evaluate ITS deployments.  In this study, the procedure relevant 

to building a microscopic traffic simulation-based test-bed for ITS applications is presented. 

This thesis describes the entire process for building a microscopic traffic simulation-based test-bed for ITS using a case study. The 

process consists of building a basic traffic simulation network, the API development for coordinated actuated signal control and, the 

dynamic O-D matrix estimation for the network. In order to estimate the dynamic O-D matrix, an approach using GA and 

QUEENSOD method coupled with traffic simulation model is introduced. Some findings during making the simulation test-bed are 

also presented. The findings are very useful for developing a simulation-based test-bed because the lessons learned from this study can 

reduce trial-and-errors and efforts needed. 

17 Key Words 18. Distribution Statement 

Intelligent Transportation Systems (ITS), evaluation, microscopic traffic 
simulation  

No restrictions. This document is available to the 
public. 

 



 

 

v 

ABSTRACT 
Microscopic traffic simulation models are very powerful tools as they provide 

inexpensive, fast, and risk-free evaluation environment. They not only provide the 

simulation of scenarios that cannot be practically tested in real world conditions, but also 

allow various network wide performance measures including travel times, delay and 

emissions. In addition, traffic simulation models are also being used extensively in 

Intelligent Transportation Systems (ITS) researches. However, there is a need to develop 

appropriate methodology and gain experience in practical usage of traffic simulation 

models to evaluate ITS deployments.  In this study, the procedure relevant to building a 

microscopic traffic simulation-based test-bed for ITS applications is presented. 

This thesis describes the entire process for building a microscopic traffic 

simulation-based test-bed for ITS using a case study. The process consists of building a 

basic traffic simulation network, the API development for coordinated actuated signal 

control and, the dynamic O-D matrix estimation for the network. In order to estimate the 

dynamic O-D matrix, an approach using GA and traffic simulation model is introduced in 

Chapter 5. Some findings during making the simulation test-bed are presented in Chapter 

3, 4 and 5. The findings are very useful for developing a simulation-based test-bed 

because the lessons learned from this study can reduce trial-and-errors and efforts 

needed. 
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CHAPTER 1  
INTRODUCTION 
 
1.1 BACKGROUND 

Microscopic traffic simulation models are very powerful tools as they provide 

inexpensive, fast, and risk-free evaluation environment. They have been widely used for 

evaluating traffic operation and traffic management studies. They not only allow to run 

simulation scenarios that may not be practically tested in a real world condition, but also 

provide various network wide performance measures including travel times, emissions, 

etc (1). It appears that microscopic traffic simulation is slowly becoming an accepted tool 

in the traditional transportation engineering applications, such as signal timing plan 

development and capacity studies (2, 3).  In addition, traffic simulation models are also 

being used extensively in the Intelligent Transportation Systems (ITS) researches. When 

a microscopic traffic simulation model is used to evaluate ITS projects, it is necessary to 

ensure that the model reflects real world conditions. Hence high fidelity stochastic and 
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microscopic simulation models are used and the models are calibrated using field traffic 

data.  

However, there is a need to develop appropriate methodology for building the 

simulation models and to gain experience in practical usage of traffic simulation models 

to evaluate various ITS deployments.  In this research, the procedure relevant to 

developing a microscopic traffic simulation-based ITS evaluation test-bed is presented. 

The procedure includes building a traffic simulation network and estimating a dynamic 

Origin-Destination (O-D) matrix. 

 

1.2 PROBLEM  STATEMENT 

As transportation system networks to be analyzed become more and more complex, tools 

that are much better than traditional planning models are required to perform such 

analyses. Microscopic traffic simulation models used for traffic studies can realistically 

replicate the movement of traffic to match existing observed conditions and produce 

network-level performance measures. Thus, traffic simulation models offer several 

advantages over traditional planning models. The benefits include more detailed results, 

fancier graphics, capability to model ITS applications, and over saturated facilities. This 

is why microscopic simulation models have been widely used as test-beds with increasing 

attention to ITS (1).  

However, users should be careful with the development of the network. It is 

necessary for the network to replicate real word situations to the highest degree possible 

in order to establish the functionality of simulation model. In particular, when the 
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network is big, the user might receive abnormal results during simulation because a large-

scale simulation network causes more complex dynamics in interactions of vehicle-to-

vehicle and vehicle-to-traffic control as well as efforts for data surveying and entering.  

This thesis builds a large network and presents the efforts to make the traffic simulation 

network to be more realistic. 

Another issue for traffic simulation models when they are used in large networks 

is gathering an appropriate Origin-Destination (O-D) trip matrix. Conventional methods 

for collecting O-D matrix tend to be costly, labor intensive and time consuming. 

Therefore, the estimation of O-D matrices from traffic counts is of great interest as traffic 

counts are easily available, inexpensive to collect and they do not disrupt traffic (4). 

Moreover, obtaining more accurate and complete traffic information can be expected 

through good surveillance systems such as vehicle detection sensors, automatic vehicle 

location (AVL) systems, automatic vehicle identification (AVI) systems, and toll 

collection systems (TCS). Because of these reasons the process of O-D estimation from 

traffic counts is gaining interests.  

For several decades, many researchers have proposed and introduced various 

techniques to estimate static O-D demands. In conventional planning applications, the 

static O-D matrix is very valuable. However, applications based on static O-D matrices 

can not explain several issues like the dynamics of congestions, departure time selection, 

and time-varying link usage and its spatial change over time. These limitations become 

more severe when the estimated O-D matrix is used for short-term planning studies or 

traffic operational studies. And with the introduction of ITS in traditional transportation 
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domain, there has been more need for the dynamic O-D matrices to consider the temporal 

and spatial change in congestion and behaviors of drivers. 

Recent researches in the dynamic O-D matrix estimation based on observed 

traffic counts provided promising results on simple networks, long freeway sections and 

complex corridors. However, only a few researchers tried to apply the dynamic O-D 

matrix estimation techniques to a large city. This thesis proposes a new approach for the 

dynamic O-D matrix estimation in a large-scale network. 

 

1.3 RESEARCH OBJECTIVES AND METHODOLOGY 

The objectives of this thesis are: 1) to build a large-scale traffic simulation network using 

PARAMICS, 2) to develop an coordinated actuated signal control logics for the network, 

and 3) to estimate a dynamic O-D matrix for the network. The specific tasks are as 

follows:  

1. Review relevant literature and assess the state-of-the-art in the dynamic O-D 

estimation; 

2. Build a traffic simulation test-bed (base network) using PARAMICS; 

3. Develop coordinated actuated signal control logic for the test-bed; and 

4. Estimate a dynamic O-D matrix using QUEENSOD and Genetic Algorithm 

(GA).  
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1.4 SCOPE OF STUDY 

The traffic simulation test-bed consists of the traffic simulation network for the entire 

City of Hampton and estimates of the dynamic O-D matrix for the network. As a 

microscopic traffic simulation model, PARAMICS was selected. 

 

1.5 ORGANIZATION OF THIS REPORT 

This report is organized into six chapters. Chapter 1 is an introductory chapter. Chapter 2 

reviews the state-of-the-art related to the dynamic O-D matrix estimations. It includes the 

introduction of various techniques for the dynamic O-D matrix estimation and their 

applications and also discusses genetic algorithm (GA) and its applications in the O-D 

matrix estimation. The developments of the basic simulation network for the case study 

and the API for a coordinated actuated signal controller are explained in Chapter 3. 

Chapter 4 and 5 detail the process of estimating a dynamic O-D demand matrix for traffic 

simulation model based on counted link flows. Finally, Chapter 6 describes the 

conclusions and recommendations of this project.  
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CHAPTER 2 

LITERATURE REVIEW 
 

2.1 INTRODUCTION 

This chapter performs a review of literature relevant to dynamic O-D matrix estimations, 

a genetic algorithm (GA) and use of microscopic traffic simulation model in ITS 

evaluation. Dynamic O-D matrix estimation methods are summarized and then, the 

introduction of GA and its applications on the static O-D matrix estimation are followed. 

  

2.2 DYNAMIC O-D MATIRX ESTIMATION 

2.2.1 Static O-D Estimation 

An O-D matrix estimation by using traffic information can be static or dynamic (i.e., time 

independent or time dependent). The both static and dynamic estimations generally 

calculate O-D matrices based on the relationship between traffic information (i.e., traffic 

counts) and O-D information. Ortuza and Willumsen (4) mathematically expressed the 

relationship as follow: 
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10, ≤≤= ∑
ij

a
ij

a
ijija ppTv       (1) 

where,  

av   =  observed traffic count in link a, 

ijT   =  trips generated from zone i to zone j, 

a
ijp   =  proportion of trips from zone i to zone j traveling through link a, 

i  =  origin, 

j  =  destination, and 

a  =  link identifier. 

 

The assignment parameter ( a
ijp ) is used to define the proportion of trips from zone 

i to zone j traveling through link a. Thus, the observed traffic count ( av ) in a particular 

link a is the summation of the contributions of all trips between zones to that link. The 

a
ijp  can be obtained using various trip assignment techniques ranging from a simple all-

or-nothing to a more complicated equilibrium assignment. Using the calculated a
ijp  and 

the observed traffic counts ( av ), the unknown ijT  is estimated. 

For several decades researchers have proposed various models and their solution 

techniques to estimate static O-D matrices. Based on theory used in the OD estimation, 

the models can be divided into gravity-based models, entropy models, equilibrium 

models, statistical models, neural network models, fuzzy weight models (5), and GA 

models (6, 7). The gravity-based models utilize multiple linear regression or non-linear 

regression (4, 5). Some equilibrium models use a modified Frank-Wolf algorithm (5). 

The maximum entropy models generally have their own specific computer programs (4). 
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The statistical models utilize the generalized least square estimation methods, Bayesian 

inference methods, maximum likelihood estimation or bilevel programming method (8). 

In conventional planning applications, the static O-D matrix is sufficient. 

However, the applications based on these static O-D matrices do not capture departure 

time selections, dynamics of congestions, and time-varying link usage and its spatial 

change over time. With the introduction of ITS in traditional transportation area, there 

has been an increasing need for the dynamic O-D matrix to consider the temporal and 

spatial change in congestion and drivers’ behaviors. 

 

2.2.2 Dynamic O-D Estimation 

Dynamic O-D matrix estimation involves finding not only trips from zone i to zone j but 

also the departure times of the trips. In other words, dynamic O-D matrix estimation 

searches the trips ( dt
ijT ) leaving zone i to zone j during time interval dt so as to match the 

estimated traffic counts to surveyed traffic counts using assignment parameters ( ta
dtijp ,

, ). 

The variable ta
dtijp ,

,  is used to define the proportion of trips leaving from zone i to zone j 

during time interval dt and traveling through link a during time interval t. Thus, the 

observed traffic count ( t
av ) in a particular link a during time interval t is the summation 

of the temporal and spatial contributions of all trips between zones to that link. 

Mathematically, the relationship between traffic information (i.e., traffic counts) and O-D 

information can be expanded from Equation (1) as follow: 
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10, ,
,

,
, ≤≤= ∑∑

dt

ta
dtij

ij

ta
dtij

dt
ij

t
a ppTv      (2) 

where,  
t
av  =  observed traffic count in link a during time interval t, 

dt
ijT  =  trips leaving zone i to zone j during time interval dt, 

ta
dtijp ,

,  =  proportion of trips leaving zone i to zone j during time interval  

  dt and traveling through link a during time interval t, 

i  =  origin, 

j  =  destination, 

a  =  link identifier, 

dt  =  time interval for departure time, and 

t  =  time interval.  

 

Ashok (9) categorized the dynamic O-D estimation into closed network and open 

network. A closed network implies that complete traffic information of the network is 

available at all points in time. In real world, obtaining that kind of complete information 

can be rarely. On the contrary, an open network is common but it provides only partial 

information. The following section discusses several dynamic O-D estimation models for 

the open network found in literature. The models are categorized by solution techniques 

used in the dynamic O-D estimations in this section.  

 

2.2.2.1 Generalized Least Squares (GLS) Estimator 

Cascetta et al. (10) generalized and extended general statistical frameworks proposed for 

the static O-D estimations to the dynamic O-D estimation case. In their study, two 

approaches were proposed. The first approach, referred to as simultaneous, looks for an 
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estimator which gives, in one step, the whole O-D matrices for all time intervals by using 

traffic counts simultaneously as shown in Equation (3). The second approach, referred to 

as sequential, produces, at each step, estimates a O-D matrix for one time interval using 

two information: 1) traffic counts relating to the same time interval and to the previous 

time intervals and 2) O-D estimates relative to previous time intervals as shown in 

Equation (4). The sequential estimator has two merits over the simultaneous estimator: 1) 

the use of estimated O-D demands obtained from current time interval as a seed value for 

the next time interval and 2) the obvious computational advantage. The following 

equations are the general forms of the simultaneous estimator [Equation (3)] and the 

sequential estimator [Equation (4)]. 

 

( ) ( )[ ]
tttt

tn
t nnnnn ff vvssTTssTT

ss
...;......;... min arg)...( 1121110...0

**
1

1

+=
≥≥

     (3) 

( ) ( )[ ]*
1

*
1210

* ,;,; min arg)( −≥
+= tttttt ff

t

TTsvTsT
s

        (4) 

where,  
*
hT  = vector of the estimated trips for all O-D pairs leaving the origin  

  during time interval t, 

tT  = vector of the initial true trips for all O-D pairs leaving the origin  

  during time interval t, 

tv  = vector of observed link flows at time interval t, 

ts  = current value of the trips vector, and 

t  = time interval, t = 1,…. tn .  
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Cascetta et al. (10) applied the above two Generalized Least Squares (GLS) 

estimators and tested the performances of their methods on the Brescia-Verona-Vicenza-

Padua motorway in Italy (linear 140 km long network including 19 zones, 19 nodes and 

54 links). 

The accuracy of OD matrices obtained from these approaches heavily relied on 

the amount of available observed link flows (9). Furthermore, no normal procedure was 

developed for assigning dynamic demands onto the network to obtain the dynamic 

assignment parameters mentioned in the section [2.2.2]. However, the Cascetta et al.’s 

approach is a good initiative in that it provided explicit equations for modeling the 

dynamic O-D estimations using observed link flows (9).  

Hellianga and Aerde (11) compared a least square error (LSE) model and a least 

relative error (LRE) model. In the LSE model, the best O-D estimate is the one that 

minimizes the sum of the squared absolute deviations between estimated and observed 

link flows [Equation (5)]. On the contrary, the LRE model determines the best O-D 

estimate as the one that minimizes the relative link error [Equation (6)]. 

 

2)(min a
a

a vvE −= ∑       (5) 

∑ 













=

a a

a

v
vE

2

lnmin       (6) 

where,  

a  = link identifier, 

av  = estimated flow on link a , and 

av  = observed flow on link a . 
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Their study described the application of the above two models for a 35-km section 

of Highway 401 in Toronto, Canada. In their application, many field conditions including 

the true O-D matrix, the true routes, and the true route weights were unknown. 

Furthermore, loop detector data covered only 45% of the 35-km section of the freeway. 

The study results showed that the LRE model estimates showed a much higher 

correlation (r = 0.95) between observed and estimated link flows than that of the LSE 

model (r = 0.75). The study also argued that the LSE model tends to overestimate the link 

flows, particularly at low flows because the it tends to place higher weight on links with 

large observed flows (11).  

 

2.2.2.2 QUEENSOD 

Van Aerde et al. (12) introduced the QUEENSOD model for generating dynamic 

synthetic O-D matrices and applied the QUEENSOD model to a 35-km section of 

Highway 401 in Toronto (12), Canada and Scottdale/Rural Rd. and Hayden Rd. (an 

alternate parallel rout to Scottdale/Rural Rd.) network in Phoenix, Arizona consisting of 

499 nodes and 1,021 links (36) and Salt Lake metropolitan region, Utah (3,365 nodes, 

7,926 links and 565 zones) (37). The QUEENSOD model, which is based on an iterative 

approach, starts the first iteration from a seed O-D matrix, which can be a uniform or 

historic O-D matrix. The seed O-D matrix is utilized to generate estimates of link flow 

based on an estimate of drivers’ expected route choices. The adjustment on the seed O-D 

matrix is conducted based on the quantitative comparisons between observed and 

estimated link flows. In this manner, the seed O-D matrix is systematically modified to 

produce a new O-D matrix. Detailed process will be explained in Chapter 4. 
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The QUEENSOD model is a computer program specifically orientied to satisfy 

practical traffic engineering as opposed to mathematical needs, while still providing a 

solution that is rooted in the state-of-the-art in a mathematical theory. 

 

2.2.2.3 Kalman Filtering  

Kalman filter algorithms (13) have been widely proposed to accommodate the real-time 

requirements (9, 14, 15). These algorithms solve least-square problems in an incremental 

fashion and allowing an update on the solution using measurement equation and 

transition equation when additional data is available (16).  Okutani (14) presented a 

Kalman filtering-based model that estimates or predicts unobserved link traffic flows 

from observed link flows. The model includes an autoregressive formulation in which the 

state vector for a period is related by correlation factors to state vectors for prior periods 

[refer to Equation (7)].  Let us assume that )(1 tx stands for an unobserved traffic flow on 

link 1 at time interval t, which is to be estimated from the observed flows on other links, 

)(txi  (i = 2,3, …., n). According to Okutani (14), the following relationship (transition 

equation) holds between )1( +tx  and )(tx : 

 
)()()(  )( t w txt1tx +=+ φ        (7) 

where,  

)(tx  = state vector of all link flows at time interval t,  

)(tφ  = n×n transition matrix,  

)(tw  = n dimensional noise vector with [ ] ,0)( =twE [ ] tsRswtw δ=)(),(cov , 

R = matrix of size n×n, and  

tsδ  = Kronecker’s delta. 
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The measurement (or observation) equation associated with the state vector )(tx  

is given by: 

 

)()(  )( t v txty +=θ         (8) 

where,  

)(ty  = n-1 dimensional observation vector, 

)(tv  = measurement error vector of size n-1 with   

  [ ] ,0)( =tvE  [ ] tsRsvtv δ1)(),(cov = , 

1R  = (n-1)×(n-1) covariance matrix of )(tv , 

θ  = (n-1)×n transfer matrix of measurement system defined as  

  ],[ IO=θ , 

O = zero vector of size n×1, and 

I = n×n identity matrix. 

 

The above Equation (8) states that the link flows except the flow on link 1 is 

observed. From Equations (7) and (8), we can obtain the estimate of )(tx denoted by 

)(ˆ tx in accordance with the Kalman filter theory as:  

 

[ ])(ˆ)()()()(ˆ)()(ˆ 1tx1ttytK1tx1ttx −−−+−−= θφφ     (9) 

where, 

 )(tK    =    n×(n-1) Kalman gain matrix. 

 

In Equation (9), the estimate )(ˆ1 tx  is given by the first element of )(ˆ tx .  



 

 

 

15 

Ashok (9) and Ashok and Ben-Akiva (15) formulated a Kalman filter based 

approach for real-time estimation and prediction. In order to overcome the inadequacy of 

Okutani (14)’s autoregressive specification for link flows, they introduced the notion of 

deviations of O-D demands form historical estimations. The state vector is hence defined 

in terms of O-D deviations that conform to an autoregressive process. The measurement 

equation is the same as Okutani’s. The assignment factions are obtained either by using 

the equations derived by Cascetta et al. (10) or by using a Dynamic Traffic Assignment 

(DTA) approach. The model was evaluated using actual traffic data from Massachusetts 

Turnpike, Massachusetts (120 miles, 15 entry/exit ramps, and 210 O-D pairs), a stretch of 

I-880 near Hayward, California (5.2 miles, 4 on-ramps, 5 off ramps and 20 O-D pairs) 

and a freeway encircling the city of Amsterdam, Netherlands (32 km, 20 entrance and 

exit ramps (9). 

Hu (35) also introduced Kalman filtering algorithm in dynamic O-D estimation 

and prediction problem in which a similar autoregressive process to Ashok and Ben-

Akiva (15) was used in the transition equation. The approach was evaluated at a 

hypothetical freeway network, which consisted of 8 zones, 32 nodes and 70 links, and 

historic O-D matrix. All entrance, exit and mainline traffic counts for the approach were 

obtained from DYNASMART simulation results. In the approach, Hu included a control 

equation within the Kalman filtering algorithm to consider drivers’ dynamic responses to 

traffic conditions (i.e., their route change according to traffic information or congestions). 

For the equation, a discrete choice model was included to calculate time-varying route 

switching probabilities of each driver for given travel time and different routes (35). 
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The advantage of Kalman filter algorithm is its ability of accommodation for 

estimation and on-line prediction of dynamic O-D matrix (15, 35). The main drawback of 

the Kalman filter algorithm appears to be its inability to handle large-scale O-D 

estimation problems. The analytical computation of the normal equations and the 

variance propagation require intensive linear algebra computations. Moreover, the 

sparsity of the least-square problem (the amount of available observed traffic counts) is 

not exploited by the algorithm and a lot of fill-in has to be performed (16). However, 

when traffic conditions are normal, or when the time intervals are short, the auto-

regressive process can provide a good estimate of the O-D matrix (16).  

 

2.2.2.4 Maximum Likelihood Estimation (MLE) 

He et al. (17) proposed a Maximum Likelihood Estimation (MLE) approach to estimate 

the parameters of dynamic O-D demand and route choice simultaneously. In order to 

derive a full likelihood functions for dynamic O-D and route choice, they presented 

approximate joint probability distribution function of the temporal link flows on a 

network. This algorithm was tested in two simple and ideal networks: i) a network 

including 4 nodes and 5 links and ii) a network consisting of 9 nodes and 12 links. 

The proposed model could incorporate prior information. It can estimate the parameters 

with measurement errors and incomplete data.   

 

2.2.3 Estimation of Temporal Route Choice for Dynamic O-D Estimation 

The most important input in the dynamic O-D matrix estimation is the calculation of 

temporal route choices of individual drivers. In static O-D matrix estimation, this route 
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choice (assignment) is broadly classified into two main groups: proportional and non-

proportional assignments. Proportional assignment method makes the proportion of 

drivers choosing each route independent from flow levels. The all-or-nothing assignment 

is an example of this kind of assignments. Non-proportional assignment explicitly 

considers congestion effects such that the proportion of travelers using each link does 

depend on link flows. Equilibrium or stochastic assignments are used in the non-

proportional assignment method. 

However, to estimate dynamic O-D matrix, the assignment has to consider 

temporal variation of congestions. Hence the traditional assignment method is not 

sufficient for this kind of estimation. In order to obtain temporal route choices, DTA or 

traffic simulation models are usually used (9, 12, 15, 18). For example, QUEENSOD 

model is linked with INTEGRATION, a microscopic traffic simulation model.  

 

2.3 GENETIC ALGORITHM 

In this section, genetic algorithms are investigated. Genetic algorithms (GA) were 

developed by John Holland in the early 1970s at the University of Michigan (19). GA is a 

family of computational models inspired by evolution and natural selection (20). These 

algorithms encode a potential solution to a specific problem on a simple chromosome-

like data structure and apply recombination operators to these structures so as to preserve 

critical information. It can be classified as a guided random search algorithm to optimize 

any form of objective function (21).  
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2.3.1 Introduction 

Genetic algorithms have been used to solve problems with objective functions that are 

difficult to work out with mathematical approaches (19, 22, 23). In particular, lots of 

transportation systems are based on stochastic systems, which are difficult to be 

represented in mathematical formulations. Dynamic O-D matrix estimation is a good 

example. In Equation (1), the observed traffic count ( av ) in a particular link a is the 

summation of the contributions of all trips between zones using that link. The trips are 

determined according to the dynamics of vehicle-to-vehicle, vehicle-to-control system, 

congestions and resulting route choices. Thus, it is not easy to represent the resulting trips 

with a mathematical formulation. 

Genetic algorithms maintain and manipulate a population of potential solutions 

and implement a “survival of fittest” concept to search better solutions. The GA also 

provides an implicit as well as explicit parallelism (24).  Explicit parallelism allows the 

exploitation of several promising areas of the solution space at the same time through 

generations. The implicit parallelism is due to the schema theory developed by Holland. 

Schema theory is explained in the Sections 2.3.2.5. 

 

2.3.2 Mechanisms of Genetic Algorithm 

The genetic algorithm is a population-based model that uses selection and recombination 

operators to generate new sample points in a search space. In general, the fittest 

individuals in the population tend to reproduce and survive to the next generation, thus 

improving the quality of successive generations. Genetic algorithms have been shown to 
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solve linear and nonlinear problems by exploring all regions of search space and 

exponentially exploiting promising areas through selection, crossover and mutation 

operations (25).  

 

2.3.2.1 Solution Representation 

In GA, each individual solution should be systemically described by a chromosome-like 

data structure. The chromosome-like data structure is made up of a sequence of genes 

from a certain alphabet. An alphabet could consist of binary digits (0 and 1), floating 

point numbers, integers or symbols  (24).  

 

1 0 1 0 0 0 1 1 1 1 0 1  

Figure 1. Example of Chromosome-like Data Structure Using Binary Digits 

 

The Figure 1 illustrates an example of chromosome-like data structure using 

binary digits. This solution representation consists of three parameters (or genes). The 

first parameter (the first four binary digits) means ‘12’ in integer value. 

The representation scheme determines how the problem is structured in the GA 

and also selects the genetic operators that are used. Problem representation (or solution 

representation) has been the subject of much investigation. It has been shown that more 

natural representations are more efficient and produce better solutions (25). 
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2.3.2.2 Selection Function 

The selection function of individuals to produce successive generations plays an 

extremely important role in the genetic algorithm. A probabilistic selection is performed 

based on the individual’s fitness such that the better individuals have an increased chance 

of being selected. An individual in the population can be selected more than once.  There 

are several schemes for the selection process: roulette wheel selection and its extensions, 

scaling techniques, tournament, and ranking methods (23, 25).  

Roulette wheel method, developed by Holland (19), works as follow: The 

probability of selection for each individual i, iP ,  is defined by: 

 

∑
=

= PopSize

j
j

i
i

F

FP

1

          (10) 

where,  

 iP   =   probability where individual i is chosen, and  

 iF   =   fitness of individual i. 

 

The use of roulette wheel selection limits the genetic algorithm to maximize the 

evaluation function. Extensions, such as windowing and scaling, have been proposed to 

allow for minimization (24). Ranking method is also used and it requires the evaluation 

function to map the solutions to a partially ordered set to allow for minimization. 

Ranking method assigns iP based on the rank of solution i when all solutions are sorted. 

Normalized geometric ranking (24) defines iP by: 
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1)1(' −−= r
i qqP          (11) 

where,  

 q  =  the probability of selecting the best individual, 

 r  =  the rank of the individual i, 

 N  =  population size, and 

 q’  =  Nq
q

)1(1 −−
 

 

Tournament selection also requires the evaluation function to map solutions to a 

partially ordered set. However, it does not assign probabilities. Tournament selection 

works by selecting j individuals randomly, with replacement, from the population, and 

inserts the best of the j into the new population. This procedure is repeated until N 

individuals have been selected. 

The elitist selection method keeps the best individual from generation to 

generation. If the best individual has not been transferred to the next generation during 

the reproduction, crossover and mutation processes, the elitist method copies the best 

individual from the current population to the next population to ensure its survival (24). 

This elitist selection method is usually used with other selection methods. 

 

2.3.2.3 Genetic Operators 

Genetic operators provide the basic search mechanism of the genetic algorithm. The 

operators are used to create new solutions based on existing solutions in the population. 

There are two basic types of operators: crossover and mutation (24). The crossover takes 
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two individuals and produces two new individuals while the mutation alters one 

individual to produce a single new solution.  

The application of these two basic types of operators and their derivatives 

depends on the solution representations (binary, real-valued number or symbol). In this 

section, simple mutation and simple crossover processes for binary solution 

representation are explained.  

Let ix and iy  be two m-dimensional row vectors denoting individuals (parents). 

Simple binary mutation generates a random number r from a uniform distribution and 

flips each bit in every individual in the population with probability mp  according to the 

Equation (12). 

 



 <≈−

=
othewisex

pUrifx
x

i

mi
i ,

)1,0(,1'         (12) 

 

Simple crossover generates a random number r from a uniform distribution and 

creates two new individual ( ix ' and iy ' ) according to the Equation (13). 
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2.3.2.4 Initialization and Termination  

The genetic algorithm must start with an initial population. The most common method is 

to use randomly generated solutions for the entire population. However, since GAs can 

iteratively improve existing solutions, the beginning population can be seeded with one 

potentially good solution with the remainder of the population being randomly generated. 

The GA moves from generation to generation by selecting and reproducing 

individuals until a termination criterion is met. The most common stopping criterion is a 

maximum number of generations. Another termination strategy involves population 

convergence criteria. In general, GAs will force much of the entire population to 

converge to a single solution. When the sum of the deviations among individuals 

becomes smaller than some specified threshold, the algorithm can be terminated. The 

algorithm can also be terminated due to a lack of improvement in the best solution over a 

specific number of generations. Several strategies can be used in conjunction with each 

other. 

 

2.3.2.5 Schema Theorem 

Even though there exists no established general theory that explains exactly why genetic 

algorithm works, several hypotheses have been proposed which can partially explain the 

mechanism of genetic algorithms (27).  

The basic theory of genetic algorithms is based on a binary string representing a 

solution, and on the notion of schemata (25). A schema is a string of total length l, taken 

from the symbols {0, 1, *}, where, ‘*’ is a ‘do not care’ symbol. A schema represents the 

set of all binary strings of length l, which match with all positions other than ‘*’.  For 
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example, consider the schema, * 1 0 *. It matches with four strings, {0100, 0101, 1100, 

1101}. It is noted that every schema matches exactly 2r stings, where r is the number of ‘ 

* ’ in a schema.  

Two important properties of schema are their order and defining length. The 

schema theorem is built from these properties. Order is the number of fixed bit-positions 

(i.e., 0 and 1 position) in a schema. Defining length is the distance between the first and 

last fixed bit positions. 

The schema theorem (19) was the first rigorous explanation of how genetic 

algorithms work. It says that “short, low-order, above-average schemata receive 

exponentially increasing trials in subsequent generations of a genetics algorithm.” 

Michealewicz (25) explained the schema theorem in more detail with the calculation of 

survival probabilities  

 

2.3.3 Genetic Algorithms in O-D Estimation 

A few studies in the area of the static O-D matrix estimation have been successfully 

conducted with GAs. Kim et al. (6) proposed the GA to estimate static O-D matrices. In 

the study, the sensitivity analysis based (SAB) algorithm and the GA as solution 

algorithms based on a bilevel programming approach were compared using a simple 

network consisting of nine nodes and fourteen links. The objective function is formulated 

as minimization of square errors based on the bilevel program approach proposed by 

Yang (28). The objective function consists of traffic counts and historic O-D matrix as 

shown in the Equation (14). 
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where, 

ijT  = estimated trips between zone i and zone j, ij ∈  W, 

ijT  = historical trips between zone i and zone j, ij ∈  W, 

av  = estimated link flows on link a, a ∈  A, 

av  = observed link flows on link a, a ∈  A, 

a = link identifier, 

W = vector for all zone pairs, and 

A = vector for all link.  

 

Here, γ  is a parameter reflecting the reliability of the historical O-D matrix. If the 

O-D matrix structure is altered by changes in land uses, a new traffic facility or etc., γ  

should have lower value since there is no significant dependence between the historical 

O-D and the current O-D patterns. In order to obtain the assignment parameter (or 

driver’s route choices and its weight), equilibrium assignment was used. The individual 

solutions were represented with two chromosomes: 

 

Xn[m][ij] = choice proportion of mth chromosome between i and destination j in n   

                    generation, where m=1, 2, …, M, M is the number of population, and 

Yn[m][ij] = proportion of mth chromosome from origin i in n generation. 

 

Using the two chromosomes, the GA calculates the estimates of trips as follow: 
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innn OijmYijXijmt ⋅⋅= ]][[][]][[       (15) 

where,  

iO = historical trips generated from origin i. 

 

Using the calculated trips and resulting link flows from equilibrium assignment, 

the fitness values of individual solutions are calculated from the Equation (14). Real-

valued GA was used with arithmetic crossover and uniform mutation (24). The maximum 

generation number was used as a stopping condition. 

Yin (7) also used GA-based approach to solve a bilevel programming model for 

static O-D estimation with two simple networks. The basic idea of the GA approach is to 

code the decision variable (trips between zone-pairs) of the upper-level problem 

(minimizing the difference between historical O-D matrix and estimated O-D matrix) and 

calculate the fitness of each chromosome by solving lower-level problem (minimizing the 

difference between observed link flows and estimated link flows). In order to solve the 

bilevel problems, Binary GA was used with single-crossover and single-bit point 

mutation (simple mutation) and tournament selection. The maximum generation number 

was used as a stopping condition. 

From the numerical tests, the GA-based approach based on the global perspective 

and implicit parallelism was founded to be more efficient than to SAB algorithms for the 

static O-D estimation. Therefore, the GA-based approach could estimate the current O-D 

matrix correctly by using the historic O-D matrix, which was surveyed before changes in 

trips patterns because the GA decreases the dependency on initial values. However, the 
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GA-based approach required more computation efforts than the SAB algorithms but 

avoids the complex computation. 

 

2.4 TRAFFIC SIMULATION MODEL IN ITS EVALUATION  

In this section, researches that used microscopic traffic simulation models in evaluation 

on ITS applications are summarized.   

Nelson and Bullock (39) examined the impact of emergency vehicle preemption 

on closely spaced arterial traffic signals on State Route 26, Indianan. In their study, 

CORSIM was used to gain the quantitative data according to control and preemption 

logic from three traffic signal controllers linked to CORSIM for the SR-26 arterial.  

Hansen et al. (40) connected the adaptive signal control system SCOOT to 

CORSIM to evaluate the performance of the adaptive signal control system in a 6 nodes 

network. In their approach, CORSIM provides the necessary traffic detector data for 

SCOOT optimization such that SCOOT can be evaluated under various traffic conditions 

generated by the traffic simulation model.  

Lucas et al. (41) evaluated the performance of the RHODES (real-time 

hierarchical optimized distributed effective system) under various traffic environment 

generated by CORSIM. Here, CORSIM produced second-by-second traffic detector 

information and evaluated the function of the traffic control of the RHODES via 

communication using a dynamically linked library (DLL). 

Chu et al. (43) presented a micro-simulation method to evaluate potential ATMIS 

applications using PARAMICS. In the study, PARAMICS provided control of traffic 
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operations and realized several functionalities of ATMIS strategies using APIs under 

incident scenarios in a corridor network located in Irvine, California.  

 

2.5 SUMMARY 

The above review has summarized the various approaches for dynamic O-D matrix 

estimations from traffic information and it certainly illustrates the complexity of the 

problem. Several techniques including generalized least squares (GLS) estimation, 

QUEENSOD model, maximum likelihood estimation (MLE) and Kalman filtering have 

been used for finding solutions for the dynamic O-D estimation problem in previous 

studies. Each technique has its own strength and weakness related to i) the amount of 

available traffic information, ii) capability for a large-scale network and iii) finding 

reasonable drivers’ route choice and its weight.  
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CHAPTER 3 

A DEVELOPMENT OF LARGE SCALE 

CASE STUDY SIMULATION NETWORK 
 

3.1 INTRODUCTION 

With the advances in the computation technology and needs for better evaluation tools in 

the design and analysis of transportation network, the use of microscopic simulation 

programs has been widely practiced. This is, in part, because the microscopic simulation 

tools provide inexpensive, fast, and risk-free evaluation environment.  

However, when researchers and practitioners are to use a microscopic simulation 

program in their studies, they often face that certain features are not provided with the 

original program or not sufficient in achieving desired evaluations. For example, the 

implementation of coordinated actuated signal timing control logic in the PARAMICS 

program is very limited. One solution to these is adding a user-specified module into the 

program using an application programming interface (API). This has been well exercised 

by researchers but very limited to practitioners.  
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The purpose of this chapter is to develop a large-scale case study simulation 

network. This chapter expresses the detailed process related to building a basic network 

and developing an API for coordinated actuated control logic in PARAMICS.  

As a case study, this study develops a simulation-based large-scale test-bed for the City 

of Hampton, Virginia, in the U.S.A. using a microscopic simulation package, 

PARAMICS. Figure 2 shows the location of City of Hampton in Hampton Roads, VA.  

 

 

Figure 2. City of Hampton, Virginia 

 

3.2 MICROSCOPIC SIMULATION MODEL SELECTION 

According to Rakha et al. (37), a large network is defined as a network with more than 

1,000 links. They described the requirements of a validated microscopic model for large-

scale modeling as followings: 
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“ i) the model must be capable of modeling origin-destination demand  

tables, ii) the model must be capable of modeling dynamic traffic routing,  

and iii) the model must  be capable of modeling the dynamic interaction  

of freeway/arterial facilities.” 

In order to search appropriate microscopic traffic simulation model, we compared 

CORSIM, SYMTRAFFIC, VISSIM and PARAMICS in terms of capability of large-scale 

network and the above three requirements (3). As a result of that, we selected 

PARAMICS for this study. In PARAMICS, there are no logical limitations on the 

number of links, nodes and vehicles whereas CORSIM and SYMTREAFFIC cannot 

support any large-scale network due to limitation on network size. VISSIM and 

PARAMICS can support O-D matrix-based assignments. In particular, PARAMICS 

provides various assignment methods including all-or-nothing, stochastic assignment, 

dynamic feedback assignment and their combinations whereas VISSIM allows one 

dynamic assignment method. These various assignments of PARAMICS can support to 

investigate various route choice behaviors of individual drivers. In addition, PARAMICS 

showed faster computational ability than VISSIM as shown in Table 1.  
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Table 1. Summary of Simulation Run Times Comparison 

Programs Simulation Conditions Average 
(Second) 

Median 
(Second) 

Standard 
Deviation 

With animation, with VAP 300.8 298.0 6.76 

Without animation, with VAP 203.2 202.0 4.6 

With animation, without VAP 242.7 244.0 4.16 
VISSIM 

Without animation, without VAP 145.2 145.0 0.84 

With animation, with API 296.3 295.5 4.13 

Without animation, with API 42.3 40.0 6.31 

With animation, without API 298.0 298.0 1.87 
PARAMICS 

Without animation, without API 41.6 40.0 6.19 
  1) These comparisons of simulation run time were conducted in the network including    
      four intersections that is operated in coordinated actuated signal control, and 
  2) These comparisons of simulation run time were conducted in the computer with Intel  
      Pentium III (933MHz) and 128MB memory. 

 

3.3 MICROSCOPIC SIMULATION MODEL, PARAMICS 

PARAMICS, developed by QuadStone Ltd., in U.K., is a suite of high performance 

software tools that provides microscopic, time-stepping, and scalable traffic simulation 

(29). The complete suite of the PARAMICS software comprises five modules: i) 

Modeler, ii) Processor, iii) Programmer, iv) Analyzer and v) Monitor. Among these, the 

Modeller is a core simulation and visualization tool and the Programmer is an API to 

PARAMICS (30). PARAMICS has been chosen by traffic researchers and practitioners 

in the US for their traffic studies. 
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3.3.1 User Interface 

The PARAMICS model provides a graphical user interface to build networks and to 

watch the simulation results (Analyzer) and animation (Modeller). User can build the 

layout of network using background images in DXF, BMP, and OS/NTF Strategi format.  

 

3.3.2 Network Structure 

The network in PARAMICS is based on node-link structure. Node usually represents the 

intersection or the point where attributes of link connecting the node to other nodes 

change. Link means a road street. PARAMICS defines the route of each vehicle through 

assignment. Thus, PARAMICS has zones and zone connector. Each vehicle starts its trip 

from origin zone to destination zone. Zone connector links a zone and a link in a network. 

The zone connector has zero impedance and is not considered in calculation of MOEs 

such as travel time.  

 

3.3.3 Traffic Generation and Assignment 

Travel demand in PARAMICS is defined as an origin-destination matrix of origin. The 

trips are proportioned into vehicle type and are profiled by 5 minute time period for a 

maximum of 24 hours. Based on this time period and demand, vehicles are randomly 

released. 

The choice of time period is governed not only by the fluctuation in time 

dependent traffic demand but also network changes such as different traffic signal 

settings by time of day. This gives the user a lot of flexibility in the design. The three 
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main assignment techniques used in PARAMICS are all-or-nothing, stochastic and 

dynamic feedback assignments. Stochastic assignment method accounts for variability in 

travel cost (or driver’s perception of those costs). This method assumes that the link costs 

perceived by drivers can be different depending on their characteristics. Dynamic 

feedback assignment assumes that drivers who are familiar with the road network will re-

route if information on the present state of traffic condition is fed back to them. 

 

3.3.4 Signal Control in PARAMICS 

The built-in traffic signal control logic in PARAMICS is designed for pretimed signals 

under single ring structure. Thus, the advanced signal control logics such as actuated 

signal control need to be developed. This can be achieved in two ways: an API and a plan 

language. The API has to be coded in a C++ language, while a built-in plan language can 

be written as a script.  

 

3.3.5 API in PARAMICS 

The PARAMICS Programmer is a framework that allows advanced users to customize 

existing control logics in the simulation model using APIs. The user customized logics 

are implemented through a dynamic link library (DLL), which is generated from a C++ 

file containing the customized logic.  A few examples of such API applications have been 

already exercised. These include signal control logic (3, 31) and parameter calibration 

(32).  
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3.3.6 Model Weaknesses 

Although PARAMICS allows the API and the plan language to develop coordinated 

actuated signal control logic, it is not easy for practitioner end users to build one. In 

addition, PARAMICS does not allow the dual-ring concept or NEMA control concept. 

Furthermore, PARAMICS doesn’t have an automatic diffusion function. For example, in 

PARAMICS if a vehicle were unable to make lane change it would stop and block other 

vehicles. This leads to discrepancies in performance when compared to real world 

condition and causes higher variability in simulation output. With a diffusion feature, a 

vehicle would not wait more than user-defined diffusion time. The vehicle would be 

removed from the simulation after diffusion time.  

 

3.4 PARAMICS NETWORK  

The PARAMICS network, as shown in Figure 5, consists of 50 zones, 3,364 links, 1,464 

nodes, and 154 signals. The 97 intersections out of the total 154 signals are being 

operated under a coordinated and actuated mode.  

 

3.4.1 Network Building 

Network building for this study was conducted as the following process (29): 

1) Preparing Data. 

- Background image of the City of Hampton 

- Distance between two specific points within the desired network 
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- Categories of link types in terms of number of lanes, speed limits, arterial or 

freeway, major or minor, and width of median 

- Detailed geometries of intersections and ramps 

- Control types of intersections and their signal timing plans 

- O-D matrices 

2) Importing background image and adjusting scale parameters for the imported  

    image using the distance measured in advance. 

3) Adding nodes for intersections and ramps using the Network Editor. 

4) Adding links between nodes using the Network Editor.  

5) Making network layout to be realistic through adding dummy nodes and links or  

    using Curve Editing function in the Network Editor. 

6) Installing zones using the Network Editor. 

7) Entering link attributes using Link Attribute Window in the Network Editor. 

8) Fine-tune geometries of intersections using the Network Editor 

- Installing left turning bay, right turning bay, and detectors 

- Changing location of curbs and stop bars 

9) Entering signal timing plans to each intersection suing Edit Junction Window in 

    the Network Editor. 

10) Entering O-D matrix. 

11) Setting simulation parameters. 

12) Watching animations. 

13) Repeat the above steps if necessary. 
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The layout of the PARAMICS network is coded based on a bitmap image from a 

Geographic Information Systems (GIS) map (Figure 3). Using the GIS map of the City of 

Hampton, the distances between intersections were determined. 

 

 

Figure 3. GIS Map Used as Reference for Network Coding 

 

The link attributes (number of lanes, geometry, link type – major, minor and 

freeway, etc.) and the node attributes (intersection geometry, intersection shape, number 

of lanes, lengths of left turning and right turning bays, etc.) were gathered from images in 

Lizard Tech’s MrSID format as shown in Figure 4.  
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  (a) Zoomed-out Image                (b) Zoomed-in Image 

Figure 4. Images in Lizard Tech’s MrSID Format 

 

Through the process mentioned in the above, the following traffic simulation 

network including 50 zones, 3,364 links, 1,464 nodes and 154 signals was finally built. 

 

 

Figure 5. PARAMICS Network for the Case Study 
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3.4.2 Signal Control Logics 

An API for the actuated and coordinated signal control logic was developed. The API 

code consists of Visual C++ code of about 3,700 lines. The signal control logic can 

realize actuated control features including gap-out, force off and phase skip. An API code 

can control all intersections in the network. The development of this process is detailed in 

section [3.4].  

 

3.4.3 Parameter Setting 

The network started with default parameter values. Default values of 1 second each were 

used for the most important network wide calibration parameters: mean headway and 

mean reaction time. It is noted that in order to avoid unrealistic simulation the lengths of 

the entire links were used as signposting distances (i.e., the distance from the intersection 

that drivers become aware of the intersection). In PARAMICS, if a proper signposting 

distance is not provided, a vehicle that needs to make lane change occasionally blocks the 

traveling lane until it finds acceptable gap to make lane change. Even with the maximum 

signposting distance, extremely large queues and network gridlocks were observed. In 

order to reduce such unrealistic behaviors, the dynamic feedback time is reduced to 120 

seconds from default of 350 seconds.  

 

3.4.4 Simulation  

Since microscopic simulation programs start from empty network, they need initialization 

period. This basically fills the network such that the network condition and the simulation 
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output become more realistic. It is decided to use 60 minutes of network warm-up time 

and 60 minutes of simulation time. Default time step of 0.5 seconds is used such that each 

vehicle’s position is updated every 0.5 seconds. There exist multiple paths among O-D 

zones in the test network. Thus, a dynamic assignment method in PARAMICS was used 

so that the variability in travel costs (or driver’s perception of those costs) plays the 

primary role in finding optimal routes.  

 

3.4.5 Visualization  

The visualization involves the observation of the simulation runs and its purpose is to 

ensure that the traffic is moving through the network in a realistic manner. Some 

corrections were made to adjust specific behaviors at links, on lanes or at intersections 

via this visualization. These corrections include moving curb locations, stop line control 

points, forced lane change positions, etc (29). In particular, “next lane” for nodes and 

“signpost distance” for links are used for forced lane change by replacing default 

PARAMICS lane changing values.  Setting “next lane” in a node and adjusting the 

parameters for “signposting” were critical in achieving realistic simulation. Parameters 

such as “moving curb” and “stop line control points” were used for smooth and realistic 

movements of individual vehicles at specific locations. These four parameters were 

changed after observing the visuals from the simulation. 

Figures 6 and 7 show the impacts of inappropriate “next lane” setting and 

parameters for “signposting.” 
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Figure 6. Example of inappropriate “next lane” 

 

As seen in Figure 6, all vehicles moving from the upstream link to the 

downstream link use only the third lane. This abnormal behavior could occur in a regular 

network if the “next lane” parameter is not set properly. 

 

 

Figure 7. Impact of Insufficient Distance for “signposting”  
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Figure 7 shows some vehicles blocking the through lanes. These vehicles need to 

make left turns but are unable to make appropriate lane changes due to lack of acceptable 

gaps. This situation may lead to distortion in simulation results as the vehicles that are not 

on their proper lanes can lead to huge unrealistic congestion. This can be avoided by 

increasing the distance of “signposting”.  

 

3.5 DEVELOPMENT OF AN API FOR COORDINATED ACTUATED SIGNALS 

A major disadvantage in a pretimed signal is that its phase times do not respond to 

fluctuating traffic volume conditions. Unlike the pretimed signal, an actuated signal can 

adjust the phase times according to the prevailing traffic conditions (33). Furthermore, 

coordinated actuated signals can provide progression by maintaining coordinated phase 

times and allow phase skip and gap-out on non-coordinated phases. Thus, unused phase 

green times are added to the coordinated phases (34).  

The API developed in this paper realizes coordinated actuated signals with 25 

possible types of phase sequences (refer to the Appendix A). In the process of the API 

development, this research used PARAMICS Modeler v.3, Programmer v.3., and 

Microsoft Visual C++ v.6.  

 

3.5.1 Geometry of Intersection and Detectors 

Figure 8 illustrates the layout of a four-leg intersection being operated under coordinated 

actuated control logic. The eastbound and westbound approaches are coordinated phases.  
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        (a) Layout of Intersection                                  (b) Signpost 

Figure 8. An Example Intersection in the PARAMICS Network 

 

Detectors are essential components in the operation of coordinated and actuated 

signals. A detector in PARAMICS can cover entire lanes on an approach link where 

detector is installed (29). The proposed API is designed to utilize up to three detectors on 

each approach. The specific usage of detectors is explained as follow. 

 

One detector case: One stop bar detector determines both the presence of through 

and left turn vehicles during red interval and the extension of 

the through movement during green interval.  

Two detectors case: One stop bar detector determine only the presence of through 

and left turn vehicles during red interval, while the other 

upstream detector (second one) determines the green extension 

of through movement during green interval. 

 N 
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Three detectors case: Two stop bar detectors determine the presence of each of 

through and left turn vehicles during red interval, while the 

upstream detector (third one) determines the extension of the 

through movement during green interval.   

 

The functionality of detectors may be changed according to the hierarchy of 

approach (coordinated approach or uncoordinated approach) or traffic controller type 

(fully actuated or semi actuated). A recent study (31) suggested that the use of multiple 

detectors instead of a long loop on left turning lanes. The study also noted that simulation 

time would increase with the use of multiple detectors as PARAMICS calculates the 

status of entire detectors in every time step. 

 

3.5.2 Yellow Change Interval 

In PARAMICS, yellow change interval time is a global variable such that only one value 

is used for the entire phases in the network. Furthermore, yellow change interval is not 

recalled for the phase once a phase skip occurs. Thus, the yellow change interval and the 

actual green interval are combined such that only effective green interval (1) is used.  

PARAMICS does not provide any functions that can control yellow change interval. 

Only green time and all red time are controllable by “signal_action” call back function 

(31). Because of this limitation, yellow change intervals are added to the green intervals 

in this study as shown in Table 2.  
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3.5.3 New Phase Sequence for API 

PARAMICS uses a phase representation that is different from a dual ring, eight-phase 

controller. Figure 9 shows the splits and phasing diagram of Synchro (i.e., traffic signal 

coordination software) for the phase sequence number 1 (refer to Appendix A). The splits 

and phasing diagram of SYNCHRO are a graphical representation of the current splits 

and phasing based on a dual ring, eight-phase controller (34).  

 

 

Figure 9. Splits and Phasing Diagram Based on a Dual Ring, Eight-Phase Controller 

 
A phase symbol ‘φ’ and the NEMA phase number is shown next to the movement 

symbol (arrows in Figure 9), while green split time in seconds is shown in the bar chart 

right below the movement diagram. The green split time includes green interval and 

intergreen times (yellow plus all red interval). However, PARAMICS uses a phase 

representation based on a single ring controller for its built-in pretimed controller. The 

single ring controller has the phases to operate one at a time sequentially as shown in 

Figure 10. 

 

# 1 # 2 # 3 # 4 # 5 # 6

1 8 s 1 2 s 7 8 s 1 4 s 8  s 5 0 s

# 1 # 2 # 3 # 4 # 5 # 6

1 8 s 1 2 s 7 8 s 1 4 s 8  s 5 0 s

 

Figure 10.  Splits and Phasing Diagram Based on a Single Ring Controller in PARAMICS 
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A phase number in PARAMICS is identified with the phase symbol # as shown in 

Figure 10. The phase number identifies a group of non-conflicting movements arranged 

in an established order of preferred sequence. For the dual ring controller (see Figure 9), 

the phase φ1 identifies the westbound left turn movement. For the PARAMICS single 

ring controller (see Figure 10), phase #1 means the movement of the westbound and 

eastbound left turns. The phase #2 is an overlap phase here. If an overlap phase exists, 

PARAMICS gives no intergreen (yellow and all red time) time between consecutive 

movements. For example, when PARAMICS changes green time from phase #1 to phase 

#2, it assigns intergreen time only between the westbound left turn and eastbound through 

as shown in Figure 10. This is because the eastbound left turn on phase #1 and #2 is 

consecutive phase. Each phase in Figure 10 can be individually skipped and gapped-out if 

no demand is present except for the coordinated phases. In order to implement phase skip 

and gap-outs in PARAMICS, this study uses a few dummy phases as shown in Table 2.  

 

Table 2. Proposed Phase Sequence for API in PARAMICS 

Phases 

***             
Times 

(second) 
#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 

Green 75 11 - - 5 - 47 15 - - 9 - - 

Yellow**** - - - - - - - - - - - - - 

All Red 3 3 - - 3 - 3 3 - - 3 - - 

Marks* A A D D O** D A A D D O** D D 
*“A” means an actual phase, “D” means a dummy phase, and “O” means an overlap phase. 
** These overlap phase is specified as a dummy phase if there exists no overlap phase. 
*** The Phase #1 for these through movements is assumed as a coordinated phase. 
**** Yellow times are included into Green interval as mentioned in the above 
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In Table 2, these dummy phases are used to realize the revised phase sequence 

due to gap-out, phase skip or extension on coordinated phase. For example, if no demand 

were present for phase #2 (both northbound and southbound left turns), the proposed API 

would skip the phase #2 and serve phase #7.  If no demand for only northbound left turns 

were present for phase #2, the API would skip the phase #2 and serve phase #3 followed 

by phases #4 and #7.  Here, the phase #4 works as an intergreen time for the southbound 

left turn movement and it serves between new phase #3 and actual phase #7. The phase 

sequence starts from the coordinated through movements (eastbound and westbound 

through movements) in order to keep the offset reference points. This is because it 

appears that the offset reference point in PARAMICS is always the start of the first phase 

(phase #1).  

 

3.5.4 Input Data Structure 

Two input data files are required to implement the proposed API. One is the “priorities” 

file – a standard input file in PARAMICS. The “priorities” file includes information like 

green interval, maximal allowed green interval, all red time and movement 

categorizations (i.e., major, medium and minor) for each phase.  The other required input 

file contains the “intersection layout and signal timing” data. It includes detailed 

information about intersection layout, NEMA phase numbering, signal timing plan and 

etc. Detail descriptions are shown below.  

 

 

 



 

 

 

48 

3.5.4.1 “priorities” file 

The “priorities” file defines green and red time interval and the hierarchy of movements. 

The following is an example of the first phase in the API (through movements on major 

approaches):  

 
actions 1    (node ID for this intersection) 
phase offset 0.00 sec   (offset)  
phase 1    (phase number) 
 70.00    (green interval) 
 max 135.00   (maximal allowed green interval) 
red phase 3.00    (all red time) 
fill     (no use of yellow time) 
all barred except   (priority of movements) 
from 2 to 5 minor    (setting turning movement of 2!1!5 as minor) 
from 3 to 2 minor    (setting turning movement of 3!1!2 as minor) 
from 3 to 5 major    (setting turning movement of 3!1!5 as major) 
from 4 to 3 minor  
from 5 to 3 major  
from 5 to 4 minor 

 
The hierarchy of priorities follows the order of “major”, ”medium”, “minor”, and 

“barred.” “Major” priority movements are free flow and not restricted by other streams of 

traffic. “Medium” priority gives way (yields) to “major” streams of traffic but has priority 

over “minor” traffic movements. “Minor” priority yields its right of way to both “major” 

and “medium” traffic flows while “barred” indicates the turn is banned to all vehicle 

movements (1). In this study, “major”, ”medium” and “minor” priorities are used for 

protected through or left movement, permissive left movement and right turn 

respectively. For dummy phase, no green interval and no all red time is assigned in the 

priorities file.  
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3.5.4.2 Intersection layout and signal timing data 

Information like the intersection layout, NEMA numbering, detailed signal timing plan 

for each intersection is embedded in “plugin.c”, which is a standard file to make the “dll” 

file for actuated control.  The following is the structure used in the “plugin.c” file. Data 

structure of “approach_layout” contains detector ID, the number of lanes for the left turn 

and through movements, left and through movement lane numbers. This information is 

required to check calls for right of way during red intervals and for gap times during 

green intervals. Data structure of “approach_layout” is embedded in the data structure of 

“intersections”.  The data structure of “intersections” includes node (intersection in the 

PARAMICS Zoom window) name and ID, the order of phase sequence, major and minor 

approaches ID and their directions, the NEMA phase numbering and signal timing plan 

for each PARAMICS phase. For offset values, the value in the PARAMICS standard 

input file (priorities file) was used in the API. More detailed description is available in 

Appendix B. 

 

3.5.5 Control Logic 

The objectives of developing an API for coordinated and actuated signal control are two 

folds. One objective is to develop an API that can consider various phase sequences as 

shown in Appendix A. It is noted that phase sequences at the traffic signals differ due to 

characteristics in vehicle arrivals, geometry (turn bay length) and others. The other 

objective is to develop an API that can control entire intersections in the simulation 

network. An API for each intersection would be easy to develop but would result in less 

efficiency.  
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To maintain a background cycle length and offsets, all coordinated and actuated 

intersections use the same reference phase – phase for the main street. For an eight-phase 

controller the reference phase is usually phases (φ2 + φ6) in NEMA phase numbering 

(10). In order to provide the right of way to the coordinated phase at the yield point 

within the cycle, the non-synchronized phases are terminated after a certain length of 

time and these are called force off points. The API calculates all force off points and 

permissive periods before starting simulation using the “api_setup” control function of 

the PARAMCIS Programmer. 

In the API, coordinated phases (phase φ2 + φ6 in NEMA phase numbering) are 

set to “maximum recall” (10). These phases utilize their maximum green times plus any 

unused times from the preceding phases.  

All the phases except for coordinated phases could be gapped-out or skipped 

depending on the demand calls and extension times. This process is established in the 

“net_action” control function of the Programmer. In order to check demand calls, the 

“loop_gap” callback function with “APILOOP_INCOMPLETE” option is used in every 

time step. Depending on the demand call status, the API finds proper path of phase 

sequence and allocates appropriate interval to the phases on the path using 

“signal_action” and “signal _inquiry” callback functions. 

 

3.5.6 Fully Actuated Signal Control and T-intersection 

The API developed for this study can implement fully actuated signal logic. A significant 

part of the fully actuated signal logic is similar to that of the actuated-coordinated signal 
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logic in the priorities file and data structure. However, fully actuated signal control is 

operated with slightly different control logic. The main difference of fully actuated signal 

from actuated-coordinated signal is that the fully actuated signal does not need to 

maintain the background cycle length. The fully actuated signal uses minimum recall on 

major approaches and no recall on minor approaches. In the fully actuated signal, the 

dummy phases used in the actuated-coordinated signals are not necessary. Instead, green 

and red intervals of every phase are operated in a “variable mode”. The green and red 

interval operated in the “variable mode” can be changed at any time.  

T-intersection is a little simpler than 4-leg intersection. The API for T-

intersections uses the same input files. However, the control logic inherits most parts of 

the coordinated actuated signals and fully actuated signals. 

 

3.6 SUMMARY 

Building a network for microscopic simulation is not an easy task. The most efficient 

method of making realistic and acceptable network is to watch the simulation animations. 

Through visualization, one can identify the locations showing abnormal behavior of 

individual vehicles and could easily identify the reason for such abnormality.  

A procedure of the proposed API for coordinated actuated signal control in PARMICS is 

presented in this chapter. A few technical challenges encountered during the API 

development are as follows: i) PARAMICS uses its own fixed phase sequence such that it 

does not implement NEMA dual-ring type control and ii) yellow change interval was not 

recalled for the phase once a phase skip occurs. The proposed approach introduced a few 
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dummy phases to model dual-ring type controller and combined yellow change interval 

and green times such that only effective green time is utilized. The experience during the 

development on the API for coordinated actuated signal indicated that the development of 

an API may not be suitable for practitioners due to complications and efforts required to 

do so. 
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CHAPTER 4 

BUILDING DYNAMIC O-D 
ESTIMATION MMODELS USING GA 
AND QUEENSOD MODEL 
 

4.1 INTRODUCTION 

As has been mentioned in Chapter 2, several methods including generalized least squares 

(GLS) model, QUEENSOD model, maximum likelihood estimation (MLE) and Kalman 

filtering have been used for dynamic O-D estimation.  

This study introduces a GA and microscopic traffic simulation based model as a 

new approach for the dynamic O-D estimation. Even though GA-based models have 

already been used for O-D estimations (6, 7), those only applied for static O-D 

estimations on simple networks using a traditional assignment method. However, this 

study involves a large network and updates assignment matrix (or assignment parameter) 

using a traffic simulation model (PARAMICS) during the dynamic O-D estimation. The 
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microscopic traffic simulation model finds the preferred routes and calculates the weights 

between zone pairs.  

One of the practical OD estimation models is selected to produce a benchmark 

performance such that the performance of the proposed GA-based model is evaluated. 

QUEENSOD model is selected because it is considered to be the practical OD estimation 

tool available in the literature. In other words, the QUEENSOD method is simple and is 

well explained in the literature (12) so that it can be easily implemented in real 

transportation field. In addition, the QUEENSOD method has been used in a large-scale 

network consisting of 3,365 nodes, 7,926 links and 565 zones (37). 

Both of the GA-based model and the QUEENSOD model find a dynamic O-D 

matrix which minimizes the discrepancies between estimated and observed link flows. 

The approach can be mathematically expressed as follow: 
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t
av  =  observed link flow in link a during time interval t, 

t
av  =  estimated link flow in link a during time interval t, 

dt
ijT  =  estimated trips leaving zone i to zone j during time  
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  interval dt, 
ta
dtijp ,

,  =  proportion of trips leaving zone i to zone j during  

  time interval dt and traveling through link a during  

  time interval t, 

i  =  origin, 

j  =  destination, 

a  =  link identifier, 

dt  =  time interval for departure time, and 

t  =  time interval.  

 

The implementations of both GA and QUEENSOD models are presented in this 

chapter. Firstly, the use of assignment matrix is discussed and followed by the procedure 

of QUEENSOD method. The selection of GA parameters and settings for the Dynamic 

O-D estimation model is examined and the procedures are presented.   

 

4.2 USE OF ASSIGNMENT MATRIX 

The QUEENSOD model and the proposed GA-based dynamic O-D estimation model use 

link flows as criteria to match existing traffic conditions. In other words, the models try 

to reduce the discrepancies between estimates of link flows and observed field link flows. 

In order to obtain such link volume discrepancies during O-D estimation, an assignment 

matrix ( ta
dtijp ,

, , shown in Equation 16) is generally required. A dynamic and multi-path 

assignment matrix is selected to calculate the estimates of link flows. This reduces 

computational time compared to running a microscopic simulation model. However, the 

assignment matrix is developed from microscopic traffic simulation model. It is also 
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noted that the microscopic simulation program is used in the evaluation of the O-D 

matrices developed from both GA and QUEENSOD models.  

The assignment matrix includes the origin zone, destination zone, departure time 

(e.g., 15-minute interval), and time-varying link usage probabilities such that the 

assignment matrix determines preferred paths between zone pairs and usage probabilities 

of links on the paths. The assignment matrix is designed to consider the uses of multiple 

paths and temporal links. Table 3 provides an example of a dynamic and multi-path 

assignment matrix: 

 
Table 3. Example of an Assignment Matrix 

Link Usage Probability (by Time)** 
Origin Destin- 

ation 

Departure 
Time 

Interval* 

Link 
ID 

5:00 
∼  

5:15 

5:15 
∼  

5:30 

5:30 
∼  

5:45 

5:45 
∼  

6:00 

6:00 
∼  

6:15 

6:15 
∼  

6:30 

6:30 
∼  

6:45 

6:45 
∼  

7:00 
1 2 1 1914 0.75 0.08 0 0 0 0 0 0 
1 2 1 1915 0.75 0.08 0 0 0 0 0 0 
1 2 1 1918 0.75 0.08 0 0 0 0 0 0 
1 2 1 1923 0.75 0.08 0 0 0 0 0 0 
1 2 1 1921 0.67 0.17 0 0 0 0 0 0 
1 2 1 2007 0.67 0.17 0 0 0 0 0 0 
     

. 

. 

.       
1 2 1 2025 0.58 0.25 0 0 0 0 0 0 
1 2 1 2026 0.58 0.25 0 0 0 0 0 0 
1 2 1 1914 0.17 0 0 0 0 0 0 0 
1 2 1 1915 0.17 0 0 0 0 0 0 0 
1 2 1 1918 0.17 0 0 0 0 0 0 0 
1 2 1 1923 0.17 0 0 0 0 0 0 0 
1 2 1 1921 0.17 0 0 0 0 0 0 0 
1 2 1 2007 0.17 0 0 0 0 0 0 0 
     

. 

. 

.       
1 2 1 3100 0.08 0.08 0 0 0 0 0 0 
1 2 1 2032 0.08 0.08 0 0 0 0 0 0 

* Departure time of 1 means 5:00 pm ∼  5:15 pm. 
** All floating values are rounded from the third decimal point. 



 

 

 

57 

As can be seen in Table 3, vehicles traveling from zone 1 (origin) to zone 2 

(destination) during time interval 1 (5:00 pm ∼  5:15 pm) use two paths: 

1) Path 1:  1914!1915!1918!1923!1921!2007! …. ! 2025 ! 2026 

2) Path 2:  1914!1915!1918!1923!1921!2007! …. ! 3100 ! 2032 

It can be also seen from Table 3 that 83% of the vehicles use path 1 and 17% use path 2. 

These percentages represent the sums of link usage probabilities for each link in Path 1 

(0.75 +0.08 or 0.67 + 0.17 or 0.58 + 0.25) and 2 (0.17 or 0.08 + 0.08). It can also be 

observed that among the 83% of the vehicles following path 1, 75% use link 1914 during 

the period 5:00 pm ~ 5:15 pm and 8% use the link during the period 5:15 pm ~ 5:30 pm. 

In addition 17% of vehicles following the path 2 also use link 1914 during the period 

5:00 pm ~ 5:15 pm.  

 

4.3 QUEENSOD MODEL 

4.3.1 Mechanism of QUEENSOD Model 

QUEENSOD, introduced by Van Aerde et al. (12), is a model for generating static and 

dynamic synthetic O-D matrices. The QUEENSOD model initiates the first iteration from 

a seed O-D matrix. The seed O-D can be either a uniform or historic O-D matrix. The 

seed O-D matrix is utilized to generate estimates of link flows based on the estimates of 

drivers’ expected route choices. The seed O-D matrix is adjusted on the basis of the 

quantitative comparisons between observed and estimated link flows. Through the 

multiple iterations of these processes, the seed O-D matrix is systematically modified to 
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produce a new and better O-D matrix. The following procedure explains the process of 

QUEENSOD model: 

 

1) Step 1: Determining dynamic drivers’ expected route choices (a dynamic and 

multi-paths assignment matrix) 

2) Step 2: Determining an appropriate dynamic seed O-D matrix (uniform O-D 

matrix or historic O-D matrix)  

3) Step 3: Conducting assignment using dynamic seed O-D matrix (assignment of 

dynamic seed O-D matrix to the network based on the assignment matrix) 

4) Step 4: Estimating link error correction factors 
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where,  
t
aCL  = correction factor for link a and time interval t, 

t
aV  = actual link volume at link a and time interval t, 

t
aV̂  = estimated link volume at link a and time interval t, 

a  = link identifier, and 

t  = time interval. 

5) Step 5: Estimating O-D error correction factors 
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where,  
dt
ijCS  =  correction factors summed between origin i and  

  destination j, 
tdt

aijPR ,
,  = probability that vehicles leaving i to j during dt use 

   link a during time interval t, 
dt
ijPO  = probabilities of link use summed for all links used for  

  traveling from i to j during time interval t, 
dt

ijCF  = correction factors finalized for between origin i and  

  destination j at time interval t, 

i = origin, 

j = destination, and 

dt  = departure time interval. 

6) Step 6: Estimating a new O-D matrix 

dt
ij

dt
ij

dt
ij CFnODnOD ×=+ )()1(       (19) 

where,  

)1( +nODdt
ij  = dynamic O-D matrix at iteration n+1, and 

n  = iteration identifier. 

7) Step 7: Repeating above steps until convergence criterion is met  

 

4.3.2 Using Existing Traffic Information 

The traffic simulation network built in Chapter 3 (Figure 11) has seven external zones 

that connect the City of Hampton to other areas. Data of 15-minute interval flows are 

available for the links connected to the external zones. Thus, it is assumed that the 15-

minute interval link flows at external zones represent the total of O-D demands generated 

from the external zones during each of 15-minute departure time interval.  
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Figure 11. Seven External Zones of Case Study Network 

 

Thus, the estimates of dynamic O-D demands generated from external zones are 

fixed by matching to the counted field link volumes (15-minute interval) after estimating 

a new O-D matrix (step 6 in Section [4.3.1]) in every iteration. 

 

4.3.3 QUEENSOD-based O-D Estimation Process 

The QUEENSOD model is evaluated according to the following procedure: 

(Step #1): Finding better assignment matrix 

 (1) Determine uniform O-D matrix as a seed O-D matrix 

 (2) Make assignment matrix based on the uniform O-D using simulation  

                 model 

 (3) Run QUEENSOD model  
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 (4) Evaluate iterations using simulation model 

 (5) Find the best O-D pattern 

 (Step #2) Finding the best O-D matrix 

 (1) Making a new assignment matrix from the selected O-D in Step #1 

 (2) Run QUEENSOD model 

 (3) Evaluate iterations using simulation model 

 (4) Find the best O-D pattern 

 

However, if any historical O-D matrix were available, the first step of 

QUEENSOD-based dynamic O-D estimation process could be skipped because the 

assignment matrix can be directly calculated from the historical O-D matrix. In addition, 

the historical O-D matrix can be used as a seed O-D matrix for QUEENSOD-based 

dynamic O-D estimation. 

 

4.4 GA-BASED O-D ESTIMATION MODEL 

As explained in Chapter 2, the GA model has a capability of finding a good solution 

within a reasonable time and works reasonably well with a complicated large scale 

optimization. The proposed GA-based O-D estimation model works with a population 

that is consisted of a large number of randomly generated potential O-D matrices. 

Through the GA selection based on the extent of discrepancy between actual observed 

link flows and estimated link flows calculated from the product of the O-D matrix and 

assignment matrix, better O-D matrices are selected for crossover and mutation 
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operations. According to schema theorem (add reference), the number of better O-D 

matrices (i.e., the O-D matrices with less discrepancies between observed link flows and 

estimated link flows) increases through generations.  

The GA-based O-D estimation model is designed to overcome some problems 

identified in the QUEENSOD-based model, which will be explained in detail later in this 

chapter and Chapter 5. For example, the GA model generates O-D matrices for a given 

total O-D demand. Note that the QUEENSOD model could not constrain total O-D 

demand volume during OD estimation. This section describes the process of estimating 

an appropriate total O-D demand and an O-D matrix, and it also explains the procedure of 

developing the proposed GA-based model.  The reason for using an assignment matrix 

instead of a simulation model in the estimation of link volumes during GA generations is 

explained at the beginning of this section. This section also provides the selection of 

solution representation, parameters and settings for the GA-based OD estimation model.   

   

4.4.1 Determination of GA Selection Method, GA Parameters and GA Operators 

4.4.1.1 GA Selection Method 

Selection of individuals (or parents) plays an extremely important role in GA. The 

selection of individuals in GA is based on the individual’s fitness such that better 

individuals have higher probability of being selected. An individual in the population can 

be selected more than once.   

This study compared two selection methods, roulette wheel selection and 

normalized geometric ranking method (24), using a binary GA with a population size of 

200, a maximum number of generation of 50, a simple crossover, and a simple mutation. 
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The comparison between roulette wheel selection and normalized geometric ranking 

method showed that normalized geometric ranking selection performed better. Figure 12 

shows the selection probabilities of randomly generated 200 solutions for dynamic O-D 

estimation using Equation (10) (roulette wheel selection) and Equation (11) (normalized 

geometric ranking selection). The x-axis gives the ranking of chromosomes from 1 to 200 

(chromosome of rank 1 is better than chromosome of rank 2 and so on) and the y-axis the 

selection probability. It can be observed that the selection probabilities of the better 

chromosomes under ranking method are significantly higher than those of roulette wheel 

selection.  

In the normalized geometric ranking method better solutions (i.e., those with 

smaller error measure values) are given higher rankings, while in the roulette wheel 

method better solutions are given higher probabilities according to the proportions. One 

of the shortcomings in the roulette wheel method is that the selection probabilities of 

individuals become not much distinguishable when fitness values of individuals are 

similar. However, the ranking method selects individuals based on the rankings such that 

it can always selects better solutions regardless of the characteristics fitness values as 

shown Figure 12. The elitist method is combined with the normalized geometric selection 

method in order to keep the best solution over generations.  
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Figure 12. Selection Probability Comparison of Two GA Selection Methods 

 

4.4.1.2 GA Operators 

This section examines two types of GA models (binary and real-valued GA). A total of 

nine combinations of operators: three cross over operator (arithmetic crossover, heuristic 

crossover, and simple crossover) and three mutations (multi non-uniform mutation, non-

uniform mutation and uniform mutation) were tested for the real-valued GA. Among 

these, simple crossover and multi non-uniform mutation combination is selected as it 

provided better results than other combinations. However, the results of other 

combinations were very similar to the best combination. For the binary GA model, 

simple mutation with a probability of 0.05 and simple crossover with a probability of 0.5 

are selected.  
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4.4.1.3 Number of Generation and Stop condition 

The most frequently used stopping criterion of the GA model is to have a specific 

maximum number of generations (24). A maximum number of generation of 50 was 

selected as the improvement in the best solution was found to be insignificant after 50 

generations. Two other stopping criteria were used in conjunction with the maximum 

number of generations: 1) lack of improvement in the fitness of the best solution over 10 

generations, 2) no differences between the fitness of best solution and the average fitness 

of the entire solutions over 10 generations. 
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     (20) 

where,  

Best_Fitnesst = fitness of the best solution at  

   generation t, 

Mean_Fitnesst = average fitness of entire solutions at  

   generation t, and 

t  = generation number, t > 10. 

 

4.4.2 Selection of Solution Representation, GA model and Evaluation Function 

In GA, each individual solution is systemically represented by a chromosome-like data 

structure. The representation scheme determines how the problem is structured in GA. 

Evaluation function in GA generates the fitness values of individuals in a population. 
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Based on the fitness values, GA conducts a selection of “parents” for GA operations. 

Thus, GA representation scheme and evaluation function have to be well designed. A 

total of 12 combinations including three proposed solution representation schemes, two 

GA models (binary and real-valued GA) and two evaluation functions are tested in this 

section.  

The selection of solution representation and GA model (binary or real-valued GA) 

is explained and followed by the selection of evaluation function.  

 

4.4.2.1 Solution Representation Scheme 

More efficient and natural solution representation schemes produce faster convergence 

and better solutions (25). Major focuses on the design of solution representation in this 

study are twofold: i) the utilization of the existing flow patterns for external zones and ii) 

natural representation of dynamic O-D matrix. 

In order to utilize existing flow patterns, as mentioned in the QUEENSOD model 

(refer to Section [4.3.2]), the proposed solution representations use 15-minute interval 

link flows. The natural representation is related to the structure of genes (or parameters) 

in the solution. The proposed GA-based dynamic OD estimation method is designed to 

maintain the total O-D demand (i.e., fixed during optimization) as an exogenously given 

value such that the total O-D demand does not change over GA generations. This ensures 

GA convergence. It is noted that total O-D demand in the QUEENSOD model could not 

be constrained during iterations. Thus, the increase in the total O-D demand might result 

in unrealistic values after a large number of iterations. In order to maintain the total O-D 
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demand, the proposed solution representations utilize proportional allocation approaches. 

The following three solution representation schemes are proposed:  

1) Solution representation 1: proportional allocation approach without utilizing link 

flows connected to external zones, 

2) Solution representation 2: proportional allocation approach utilizing 1-hour 

interval link flows connected to external zones, and  

3) Solution representation 3: proportional allocation approach utilizing 15-minute 

interval link flows connected to external zones. 

 

Solution Representation 1  

This solution representation simply uses the proportional allocation approach through 

three sequent stages (i.e., the parameters of one solution representation can be grouped 

into three sequential parts and the parameters in each group have different roles in the 

dynamic O-D estimation) to make an O-D matrix. The four parameters in the first group 

are used to divide a given total O-D demand into four O-D demand pairs that depart in 

each of four 15-minute time intervals. Based on the four O-D demand pairs, the 

parameters in the second group make sums of O-D demands that depart in 15-minute 

intervals from each zone. Finally, the parameters in the third group determine the values 

of the O-D demands that depart from every origin to every destination. One solution (or 

chromosome) consists of 10,004 parameters (or genes). The detailed decoding equation is 

expressed in Appendix C-1. 
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Figure 13. Three Stages of Making O-D Matrix Using Solution Representation 1 

 

Solution Representation 2 

This solution representation uses proportional allocation approach that utilizes 1-hour 

interval link flows connected to external zones through three sequent stages. The 

parameters in the first group are used to divide a given total O-D demand into four O-D 

demand pairs that depart from internal zones during a 1-hour period. This differs from 

solution representation 1 in that only the sums of O-D demands starting from internal 

zones are determined in this stage. In the case of the seven external zones, the counted 

link flows for a 1-hour interval are directly used instead of being calculated. Based on the 

sums of O-D demands, parameters in the second group make O-D demands that depart 

from/to every zone for a 1-hour interval. Finally, parameters in the third group divide 

these 1-hour O-D demands into 15- minute O-D demands from each origin to every 

destination for every 15-minute time interval. One solution consists of 9,843 parameters. 

The detailed decoding equation is expressed in Appendix C-2. 
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Figure 14. Three Stages of Making O-D Matrix Using Solution Representation 2 

 

Solution Representation 3 

This solution representation uses the proportional allocation approach utilizing 15-minute 

interval link flows through three sequent stages. Parameters in the three groups are used 

in the same way as solution representation 1. However, the first and second stages apply 

for O-D demands generated from only internal zones. In the case of external zones, the 

counted link flows for 15-minute intervals are directly used. One solution consists of 

9,976 parameters. The detailed decoding equation is expressed in Appendix C-3. 
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Figure 15. Three Stages of Making O-D Matrix Using Solution Representation 3 

 

4.4.2.2 Binary and Real-valued GA Models 

In Holland’s original design, the solution representation was limited to binary digits. 

However, a real-valued GA is later proposed because it can handle the problem closer to 

the actual problem representation that offers higher precision with more consistent results 

across replications (22). The real-valued GA is more efficient in terms of CPU time and 

computer memory usage. The above three solution representations using binary and real-

valued GA models are tested in the next section. 

 

4.4.2.3 Comparison Performance of Solution representations and GA models 

In order to select a more efficient GA model and its solution representation, this study 

examines the performances of three solution representations using both binary and real-
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valued GAs. For the purpose of evaluating the GA performance across replications, a 

maximum generation number of 25, initial population size of 50, and total O-D demand 

of 45,000 are used. In order to ensure unbiased comparisons, the same initial population 

was used for all the cases. The GA selection method, GA operators and parameters are 

previously described. 

 

Capability of Generating Initial Populations 

In order to test the performance of the three solution representations in making initial 

population, three populations sets with 50 individual solutions each are randomly 

generated using the three solution representation schemes.  As can be observed in Table 

4, the solution representations 2 and 3 that utilized link flows at external zones show 

better results. Solution representation 2 is found to be better than solution representation 

3. 

 

Table 4. Summary of Initial Populations From Three Solution Representations 

Solution 
Represe-
ntation 

Error 
Mea- 
sure 

Mean Median Standard 
Deviation Minimum Maximum 

SSE 4.72E+07 4.63E+07 3.22E+06 4.22E+07 5.68E+07 
1 

MAPE 69.04332 69.4485 3.116729 63.629 75.98 

SSE 3.92E+07 3.86E+07 2.46E+06 3.60E+07 4.70E+07 
2 

MAPE 59.85404 59.7125 1.969855 55.555 64.458 

SSE 4.33E+07 4.24E+07 2.95E+06 3.86E+07 5.21E+07 
3 

MAPE 63.0396 63.4095 2.845755 58.096 69.373 
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Capability of GA Representation 

As shown in Table 5, the binary GA with solution representation 2 produced the best 

performance in GA representation. Based on this result, the binary GA with solution 

representation 2 is used for dynamic O-D estimations. 

 

Table 5. Summary of Examination 

GA Models 

Binary GA Real-Valued GA 
Solution 

Represen-
tations 

Statistics 
MAPE 

Eval. Func. 
SSE 

Eval. Func. 
MAPE 

Eval. Func. 
SSE 

Eval. Func. 
Best 55.40 3.49E+07 56.12 3.64E+07 
Mean 58.55 3.56E+07 58.59 3.73E+07 1 

STD 1.44 1.12E+06 1.28 1.09E+06 
Best 52.61 3.21E+07 53.75 3.47E+07 
Mean 54.47 3.38E+07 55.42 3.62E+07 2 

STD 0.81 7.55E+05 1.36 8.12E+05 
Best 53.45 3.43E+07 55.97 3.68E+07 
Mean 55.70 3.61E+05 57.62 3.85E+07 3 

STD 0.96 1.02E+05 1.46 1.27E+05 
 

4.4.3 Evaluation Function 

4.4.3.1 Evaluation Process 

Evaluation function in GA generates fitness values of individuals in the population. 

Based on the fitness values, GA conducts a selection of “parents” for GA operations in 

the next process. The evaluation function involves three sequential processes: 1) 

Calculation of O-D matrix using individual solution generated by GA, 2) Estimation of 
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link volumes using calculated O-D matrix and dynamic and multi-path assignment 

matrix, and 3) Calculation of fitness values based on the error measure. 

 

4.4.3.2 Measures of Effectiveness (MOE) and Error Measure 

In the calculation of MOE, the 15-minute interval link flows are used. To estimate the 

link volumes, the evaluation function uses the dynamic and multi-path assignment matrix 

generated from the PARAMICS simulation under initial O-D (or uniform O-D) demand.  

The evaluation functions considered in GA are the Sum of Squared Error (SSE) and 

Mean Absolute Percent Error (MAPE). The SSE and MAPE measures are obtained from 

actual observed link flows and estimated link flows from the assignment matrix and 

estimated OD matrix. The SSE uses a squared error as shown in Equation (7), whereas 

the MAPE is based on an averaged relative error (i.e., the absolute deviation between 

estimated link volume and actual link volume are divided by actual link volume) and is 

described in Equation (8). 
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where,  

a  = link identifier, 
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t
av  = estimated flow on link a  at time interval t, 

t
av  = observed flow on link a  at time interval t,  

t = time interval, 

nt = number of time interval, and 

N  = number of links. 

 

The GA under the SSE evaluation function tries to find solutions with low 

deviations of link volumes on major roads, because the squared deviations between 

estimated and actual link volumes on major roads are bigger than those of minor roads. 

However, the MAPE is a unit free error measure as it averages relative deviations (35). 

Hence, the MAPE considers the volume deviations on major and minor roads with the 

same weight. The following Figure 16 shows the results of GA under the MAPE and the 

SSE evaluation functions.  

 

 

(a) GA Using SSE Evaluation Function 
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(b) GA Using MAPE Evaluation Function 

Figure 16. Estimated and Observed Link Flows Comparison  

 

As mentioned in the above, the GA with SSE seems to overestimate the low 

volume links and yet to perform better with high volume links. This situation is apparent 

in Figures16 and 17, and Table 6.  
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Figure 17. Correlation of Estimated Link Flows from GA Using SSE and MAPE 
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In order to investigate the performance of each error measure, the links were 

divided into three groups. The first group includes links with volumes less than 600 

veh/15-min. The second group includes links with volumes between 600 veh/15-min and 

1,200 veh/15-min. The remaining links are categorized as the third group. The SSE and 

MAPE of the link volume estimates from GA are then compared by groups. As can be 

observed in Table 6, GA with SSE shows better results in groups 2 and 3. 

 

Table 6. Error Measures in Divided Groups 

Link Volume < 600 
(Unit: veh/15-min) 

600≤Link Volume < 1200  
(Unit: veh/15-min) 

Link Volume > 1200 
(Unit: veh/15-min) Evaluation 

Function 
SSE MAPE SSE MAPE SSE MAPE 

SSE 3.73E+06 65.42% 6.70E+06 38.02% 2.20E+07 38.03% 

MAPE 3.70E+07 56.08% 80233645 40.93% 2.59E+07 40.23% 
 

Though MAPE, a unit free measure (35), is widely used, it does not distinguish 

heavy and light traffic volume conditions. Since major roads having higher volumes are 

more important than minor roads in the O-D estimation and of course other traffic 

engineering studies, the SSE has been selected as an error measure for GA evaluation 

function. Finally, the GA model mathematically follows Equation (16). 
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where,  
t
av  =  observed link flow in link a during time interval t, 
t
av  =  estimated link flow in link a during time interval t, 

dt
ijT  =  estimated trips leaving zone i to zone j during time  

  interval dt, 
ta
dtijp ,

,  =  proportion of trips leaving zone i to zone j during  

  time interval dt and traveling through link a during  
  time interval t, 
i  =  origin, 
j  =  destination, 
a  =  link identifier, 
dt  =  time interval for departure time, and 
t  =  time interval.  

 

4.4.4 GA-based O-D Estimation Process 

The proposed GA-based dynamic O-D estimation involves the following steps: 

 
(Step #1): Finding better assignment matrix 

 (1) Determine uniform O-D matrix as a seed O-D matrix 

 (2) Make assignment matrix based on the uniform O-D using simulation  

                  model 

 (3) Run GA with different sums of O-D demands 

 (4) Evaluate GA runs 

 (5) Find the best O-D pattern 

(Step #2) Finding appropriate sum of O-D demands 

 (1) Making a new assignment matrix from the selected O-D using  

                  simulation model 

(2) Run GA with different sums of O-D demands 

(3) Evaluate GA runs 
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 (4) Find the appropriate sum of O-D demands 

(Step #3) Finding the best O-D matrix 

 (1) Making a new assignment matrix from the selected O-D using simulation  

                  model 

(2) Run GA with different sums of O-D demands near to the best one in Step #2 

 (3) Evaluate GA runs with  

 (4) Find the appropriate sum of O-D demands 

 

Because information about target O-D demand or historical O-D matrix is 

assumed to be unknown, this study starts with a uniform O-D matrix to make an 

assignment matrix. However, starting from the uniform O-D matrix is neither realistic nor 

acceptable to develop a realistic assignment matrix. Therefore, the main O-D estimation 

begins from step two. In the step two, runs of GAs with different total O-D demand that 

covers the possible range of true total O-D demand are conducted. The results with 

multiple traffic simulation runs are then evaluated to select the appropriate total O-D 

demand. In the third step, a new assignment matrix is calculated using the results from 

step two. Using the new assignment matrix and several total O-D demands that are close 

to the best total O-D demand in step two, the step three finds the best O-D matrix. The 

assignment matrix is improved over three steps. However, if any historical O-D matrix 

were available, the first step of GA-based dynamic O-D estimation process could be 

skipped because the assignment matrix can be directly calculated from the historical O-D 

matrix. 
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4.5 SUMMARY 

The QUEENSOD model is a simple and straightforward and well explained in the work 

of Van Aerde et al. (12). Thus, this report followed the approach proposed by Van Aerde.  

However, the GA model is used for only static O-D estimations (6, 7). Thus, this study 

investigates the performance of GA models with different methodology and parameters 

(i.e., binary GA vs. real-valued GA). After the extensive evaluation of GA settings and 

parameters, the binary GA model, with the simple crossover, the simple mutation, the 

normalized geometric selection, the SSE in the evaluation function and solution 

representation 2, was selected. 

 In addition, the GA-based dynamic O-D estimation model can also accommodate 

the historical O-D matrix with changes in the object function. In other words, the object 

functions can be extended from a least square formula based on the bilevel program 

approach proposed by Yang (28) [refer to Equation (14)].  

The proposed GA-based dynamic OD estimation method is designed to maintain 

the total O-D demand (i.e., fixed during optimization) as an exogenously given value 

such that the total does not change during GA generations. This ensures GA convergence. 

On the contrary, total O-D demand in the QUEENSOD model is not constrained during 

its iterations.  
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CHAPTER 5 

IMPLEMENTATION OF DYNAMIC     

O-D MATRIX ESTIMATION MODELS 
 

5.1 INTRODUCTION 

In this chapter, the proposed GA-based dynamic O-D estimation and the QUEENSOD-

based dynamic O-D estimation are implemented with the City of Hampton network built 

in with the PARAMICS microscopic simulation program. Both dynamic O-D estimation 

models are coded using MATLAB 6.5 (36).  

 

5.1.1 Data Collection  

Link counts for the dynamic O-D estimation were available from the City of Hampton 

and the VDOT Database. The database, which operated by the Virginia department of 

transportation (VDOT), provides traffic information (i.e., link counts) of continuous 

count stations and non-continuous count stations in Virginia. Most of the link counts 
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were collected in 2001 with 15-minute or 1-hour intervals. It is noted that these link 

counts data did not cover entire network and they were not collected on a same day.  

 

5.1.2 Peak Period Selection  

Since most of the traffic engineering studies and ITS applications intend to improve the 

capacity and efficiency of traffic facilities during peak period, this study considers a 

simulation-based test-bed with a dynamic O-D during the peak hour. In order to identify 

the peak period in the City of Hampton, 656 directional link volumes between 6 am and 7 

pm were converted into 15-minute interval link flows.  It is observed that the time period 

between 5 pm and 6 pm is the peak hour. Figure 18 shows the temporal pattern of 15-

minute interval link flows of randomly selected five links on Mercury Blvd. 
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Figure 18. 15-minute Interval Link Flows  
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5.2 QUEENSOD-BASED DYNAMIC O-D ESTIMATION 

In the QUEENSOD model, the maximum iteration of 50 is used. The estimates of the 

dynamic O-D matrix are summarized with the SSE obtained from observed actual link 

flows and estimated link flows by 15-minitute interval. This is because individual 15-

minute interval estimates of the dynamic O-D matrix follow different trends as shown in 

Figures 19 and 22.  

 

5.2.1 Finding Better Assignment Matrix (Step #1) 

In the first step (i.e., initialization period), a uniform seed O-D matrix is used to create an 

assignment matrix in which obtained from the PARAMICS simulation run. The results of 

the QUEENSOD model estimation are illustrated in Figure 19 and summarized in Table 

7. In Figure 19, it can be observed that the average SSE values dramatically decrease 

during the first two iterations and gradually decrease up to 25 iterations.  

 

 

Figure 19. Convergence of the QUEENSOD Model in Step 1 
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Figure 20 also shows the total O-D demand over the iterations of the 

QUEENSOD estimation. Note that in the QUEENSOD model, the adjustment of each O-

D pair demand is independent from other O-D pairs such that the total O-D demand is not 

constrained during optimization. Thus, the total O-D demand changes over iterations. It 

was found that after 3 or 4 iterations, the QUEENSOD method kept increasing total O-D 

demand and that resulted in lower SSE values. Further investigation revealed that the 

QUEENSOD method increased O-D demands for those O-D pairs having higher SSE 

errors. This was because the initial O-D demands were much lower than “unknown 

optimal” O-D demands.  

 

 

Figure 20. Change of Total of O-D Demand in Iterations 

 

The estimated O-D matrices from the QUEENSOD model are then evaluated 

using the PARAMICS simulation program. Each O-D matrix is simulated for five times 

with different random number seeds to consider stochastic variability. It is noted that the 

PARAMICS program simulates on the basis of dynamic traffic assignment and provides 
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dynamic link traffic counts and assignment matrix. The results of O-D matrices 

evaluation in PARAMICS are presented in Figure 21 using a box-plot graph and Table 8. 

Note that only the first nine O-D matrices results are presented as O-D matrices after 10th 

iterations revealed extreme congestions during the PARAMICS simulations. The O-D 

matrix obtained at the 8th iteration produced the best result.  
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Figure 21. Box Plot of O-D Matrix Estimates Evaluation Using PARAMICS 

 

5.2.2 Finding the Best O-D Matrix (Step #2) 

In step 2, a new assignment matrix was generated from the PARAMICS simulation using 

the best O-D matrix obtained at the 8th iteration during step 1. The QUEENSOD method 

is implemented with the new assignment matrix and a new seed O-D matrix (i.e., the best 

O-D matrix obtained at the 8th iteration during step 1). The QUEENSOD convergence is 

plotted in Figure 22 and summarized in Table 7. Interestingly, the SSE increased for the 
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first 5 iterations and then decreased. However, the changes in the total O-D demand, 

shown in Figure 23, presented similar pattern when compared to that of step 1.  

 

 

Figure 22. Convergence of the QUEENSOD Model In Step 2 

 

 

Figure 23. Change of Total O-D Demand in Iterations 
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Table 7. Results of the QUEENSOD Iterations 

SSE SSE 
Iteration 

Step 1 Step 2 
Iteration 

Step 1 Step 2 
1 6.17E+07 1.93E+07 26 1.55E+07 1.85E+07 
2 3.52E+07 3.02E+07 27 1.56E+07 1.81E+07 
3 3.62E+07 3.52E+07 28 1.56E+07 1.77E+07 
4 3.56E+07 3.69E+07 29 1.57E+07 1.73E+07 
5 3.43E+07 3.71E+07 30 1.58E+07 1.70E+07 
6 3.26E+07 3.65E+07 31 1.59E+07 1.67E+07 
7 3.08E+07 3.55E+07 32 1.60E+07 1.64E+07 
8 2.89E+07 3.44E+07 33 1.61E+07 1.62E+07 
9 2.70E+07 3.32E+07 34 1.63E+07 1.60E+07 

10 2.53E+07 3.19E+07 35 1.64E+07 1.58E+07 
11 2.38E+07 3.07E+07 36 1.66E+07 1.56E+07 
12 2.23E+07 2.95E+07 37 1.68E+07 1.54E+07 
13 2.11E+07 2.84E+07 38 1.70E+07 1.53E+07 
14 2.00E+07 2.73E+07 39 1.71E+07 1.51E+07 
15 1.91E+07 2.63E+07 40 1.73E+07 1.50E+07 
16 1.83E+07 2.53E+07 41 1.75E+07 1.48E+07 
17 1.76E+07 2.44E+07 42 1.77E+07 1.47E+07 
18 1.71E+07 2.35E+07 43 1.80E+07 1.46E+07 
19 1.66E+07 2.27E+07 44 1.82E+07 1.45E+07 
20 1.63E+07 2.19E+07 45 1.84E+07 1.44E+07 
21 1.60E+07 2.12E+07 46 1.86E+07 1.43E+07 
22 1.58E+07 2.06E+07 47 1.88E+07 1.42E+07 
23 1.57E+07 2.00E+07 48 1.90E+07 1.41E+07 
24 1.56E+07 1.95E+07 49 1.92E+07 1.40E+07 
25 1.55E+07 1.90E+07 50 1.94E+07 1.39E+07 

 

Again, the PARAMIC simulation results of the first nine O-D matrices are shown 

in Table 8 and Figure 24. It was found that the O-D matrix at 8th iteration resulted in the 

best estimation.  
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Table 8. Evaluation Results of Estimated O-D Matrix from PARAMICS  

SSE 
Iteration Num. Statistic 

Step 1 Step 2 

Average 4.24E+07 6.21E+07 
Median 4.10E+07 6.21E+07 1 

STD 3.32E+06 1.94E+06 
Average 4.27E+07 6.48E+07 
Median 4.26E+07 6.14E+07 2 

STD 7.35E+05 8.61E+06 
Average 4.36E+07 5.50E+07 
Median 4.29E+07 5.58E+07 3 

STD 2.77E+06 3.66E+06 
Average 4.43E+07 5.14E+07 
Median 4.37E+07 5.08E+07 4 

STD 1.48E+06 2.76E+06 
Average 4.51E+07 5.24E+07 
Median 4.55E+07 5.19E+07 5 

STD 2.64E+06 2.18E+06 
Average 4.42E+07 5.02E+07 
Median 4.50E+07 5.11E+07 6 

STD 1.95E+06 4.12E+06 
Average 4.33E+07 4.63E+07 
Median 4.34E+07 4.70E+07 7 

STD 1.12E+06 2.25E+06 
Average 4.14E+07 4.61E+07 
Median 4.13E+07 4.57E+07 8 

STD 1.33E+06 1.46E+06 
Average 4.18E+07 5.13E+07 
Median 4.16E+07 5.22E+07 9 

STD 1.07E+06 8.97E+06 
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Figure 24. Box Plot of O-D Matrix Estimates Evaluation Using PARAMICS 

 

The SSE measures of estimated and actual link volumes from QUEENSOD 

iterations and its PARAMICS evaluation show a sizeable discrepancy. There are two 

reasons for this discrepancy: i) the use of inappropriate assignment matrix and ii) the 

method of adjusting the O-D demands in the QUEENSOD. Since the assignment matrix 

was initially extracted from the PARAMICS simulation run under the uniform O-D 

matrix, the assignment matrix is unable to replicate realistic drivers’ route choice 

behaviors. Secondly, The QUEENSOD method always produces better SSE measures 

with higher total O-D demand. This is because the QUEENSOD method has a tendency 

to adjust O-D demands by first matching those observed link flows carrying higher 

volumes. For example, the heavy traffic demands assigning high traffic volumes on I-64 

links come from three external zones (i.e., zones 4, 5 and 6 in Figure 25(a)) as they are 

the main entry points to the City of Hampton. It was observed that the QUEENSOD 
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method not only increases O-D demands among these three zones but also increases O-D 

demands among zones along I-64 highway. This pattern is illustrated in Figure 25. The 

high demands from zone 6 (I-64, west city limit) and zone 4 (I-64, east city limit) can be 

easily understood. However, as the number of iterations increases, the demands from 

zone 7 to zone 4 and zone 5 to zone 33 are increased to match the high flows on I-64 

instead of the increasing the demand from zone 6 to zone 4 as shown Figure 25.  

Animations show that the estimated O-D demands from iterations 8 and 25 cause a great 

deal of congestion due to heavy turning volumes that exceed the capacity of the ramps. 

Another observation made during the implementation of the QUEENSOD method is that 

it increases the O-D demands on zone pairs adjacent to the one that it is trying to 

match/increase. This pattern of increasing the O-D demands of other zone pairs increases 

with the number of iterations. This characteristic of the QUEENSOD results in better 

SSE values for estimates at higher iterations.  
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(b) O-D Distribution Pattern from Iteration 1 
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(c) O-D Distribution Pattern from Iteration 8 
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(d) O-D Distribution Pattern from Iteration 25 

Figure 25. O-D Demands Adjustment by the QUEENSOD Model 
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The O-D demand pattern estimated by the QUEENSOD model causes huge 

turning demands, particularly on major roads (or high flow links). The abnormally large 

turning demands result in critical congestions during traffic simulation. In the 

QUEENSOD iterations, such congestion effects are not considered because the 

assignment matrix does not consider the capacities of the turning movements. Thus, the 

estimated link flows from the QUEENSOD iterations and the actual observed link flows 

can have a high correlation. However, in the evaluation of the O-D estimates from the 

QUEENSOD method using PARAMICS, the estimated link flows from the PARAMICS 

simulation and the actual observed link flows showed very small correlation because of 

congestion effects, in particular, from high tuning demands as shown in Figure 26. 

  

  

          (a) QUEENSOD Iteration                               (b) Simulation 

Figure 26. Comparison of Estimated Link Flows vs. Observed Link Flows 

 
5.3 GA-BASED DYNAMIC O-D ESTIMATION 

In the QUEENSOD method, individual 15-minute estimates of dynamic O-D demands at 

times followed different trends, as shown in Figure 19. The total O-D demands increased 

through the QUEENSOD iterations, as shown in Figures 20 and 23. Also, the results 
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between the QUEENSOD iteration and PARAMICS evaluation for them showed big 

discrepancy, as shown in Figure 26. These results were caused by the local solution that 

the QUEENSOD-based model found. 

In the contrary, GA based on implicit and explicit parallelisms showed its ability 

to approach global solutions using the schema theorem (19, 25, 27).  Also, the promising 

performances of GA in transportation problems were introduced through researches (6, 7, 

21, 32, 38). In this study, the GA-based model is designed to avoid the above problems 

found in the QUEENSOD-based model using the ability to finding better global solution. 

As mentioned in Chapter 4, the binary GA with the solution representation 2 is 

selected for the GA-based dynamic O-D estimation. The GA model uses the following 

parameters and the initial population has been randomly generated. 

- Normalized geometric selection (selection parameter: 0.08) 

- Simple crossover (crossover probability: 0.5) 

- Simple mutation (mutation probability: 0.05) 

- Maximum generation: 50 

- Population size: 200   

- Fitness value: sum of squared error (SSE) 

 

5.3.1 Finding Better Assignment Matrix (Step #1)   

In the first step, the six different total O-D demands are used in the GA-based O-D 

estimation. It is noted that the assignment matrix used in the first step GA optimization is 

same as that of QUEENSOD estimation. The total O-D demand ranges varied from 

40,000 to 65,000 vehicles per hour. The results of GA runs are summarized in Table 9. It 

appears that higher total O-D demand  (e.g., 60,000 vehicles per hour) produces better 
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results. It is noted that during the GA optimization the SSE measures are calculated from 

assignment matrix and estimated OD matrix. However, the performance of the final O-D 

matrix estimated from GA optimization is evaluated through the PARAMICS simulation 

runs. Each O-D matrix was simulated five times with different random number seeds and 

the average, median and standard deviation of the PARAMICS runs are summarized in 

Table 10 and illustrated Figure 27. The SSE measures are obtained from observed actual 

link flows and estimated link flows from the PARAMICS simulation runs. The total O-D 

demand of 45,000 vehicles per hour provided the best result (median equals to 

3.96E+07). It is noted that the average SSE value from GA optimization run (2.86E+07, 

Table 9 column under step 1) and the average SSE value from the PARAMICS 

simulation runs (4.09E+07, Table 10 column under step 1) exhibit significant differences. 

This is due to the assignment matrix used in the GA optimization. The initial assignment 

matrix was obtained from the PARAMICS simulation using a uniform O-D matrix such 

that it does not represent drivers’ route choice behavior.  
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Figure 27. Box Plot of O-D Matrix Estimates Evaluation Using PARAMICS 
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5.3.2 Finding Appropriate Total O-D Demand (Step #2)   

In the second step, a new assignment matrix is extracted from the PARAMICS simulation 

run under the best O-D matrix which was found at the total O-D demand of 45,000 

vehicles per hour. The GA optimization runs were again conducted from total O-D 

demand between 40,000 to 60,000 vehicles per hour. Note that the total O-D demand of 

65,000 vehicles per hour was eliminated as it produced extremely high SSE measure 

(8.96E+07, Table 10). The results of GA optimization runs were shown in Table 9 under 

step 2 column. The PARAMICS simulation results under these O-D demands are shown 

in Figure 28 and Table 10 under step 2 column. Again, the O-D matrix estimated under 

the total O-D demand at 45,000 vehicles per hour produced the lowest SSE measure of 

3.78E+07 as shown in Table 10. Even though the SSE discrepancy between GA 

optimization and PARAMIC simulations is reduced from that of step 1, it is still very big. 

Thus, the step 3 runs are conducted.  
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Figure 28.  Box Plot of O-D Matrix Estimates Evaluation Using PARAMICS 
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5.3.3 Finding Best Total O-D Demand and O-D Matrix (Step #3)   

During the step 3, three total O-D demands of 42,500, 45,000, and 47,500 vehicles per 

hour are considered as the best O-D demand was found at 45,000 in step 2. Figure 29 

illustrates the convergence of the GA model with total O-D demand of 45,000 

vehicle/hour. 

 

 

Figure 29. Convergence of GA Iterations  

 

The new assignment matrix was extracted from the best PARAMICS simulation 

run and used in the GA optimization runs. The SSE measures from the GA optimization 

and the PARAMICS simulation runs are shown in Tables 9 and 10, respectively.  
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Figure 30.  Box Plot of O-D Matrix Estimates Evaluation Using PARAMICS 

 

Table 9. Results of the GA Runs 

SSE Total Sum of 
O-D Demands 

(veh./hour) Step 1 Step 2 Step 3 

40,000 3.29E+07 3.17E+07 - 

42,500 - - 2.68E+07 

45,000 2.86E+07 2.77E+07 2.63E+07 

47,500 - - 2.45E+07 

50,000 2.56E+07 2.47E+07 - 

55,000 2.28E+07 2.22E+07 - 

60,000 2.13E+07 2.04E+07 - 

65,000 2.30E+07 - - 
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Table 10. Evaluation Results of Estimated O-D Matrix from PARAMICS 

SSE Total Sum of 
O-D 

Demands 
(veh./hour) 

Statistics 
Step 1 Step 2 Step 3 

Average 4.12E+07 3.90E+07 - 

Median 4.15E+07 3.90E+07 - 40,000 

STD 1.24E+06 1.06E+06 - 

Average - - 2.99E+07 

Median - - 2.99E+07 42,500 

STD - - 1.07E+06 

Average 4.09E+07 3.78E+07 2.83E+07 

Median 3.96E+07 3.71E+07 2.75E+07 45,000 

STD 4.44E+06 3.52E+06 2.36E+06 

Average - - 3.13E+07 

Median - - 3.10E+07 47,500 

STD - - 1.51E+06 

Average 4.08E+07 3.84E+07 - 

Median 4.01E+07 3.93E+07 - 50,000 

STD 2.82E+06 3.47E+06 - 

Average 5.94E+07 4.25E+07 - 

Median 5.48E+07 4.19E+07 - 55,000 

STD 2.36E+06 1.92E+06 - 

Average 4.96E+07 4.82E+07 - 

Median 4.86E+07 4.77E+07 - 60,000 

STD 6.56E+06 4.44E+06 - 

Average 8.96E+07 - - 

Median 8.92E+07 - - 65,000 

STD 1.21E+07 - - 
 



 

 

 

98 

The PARAMIC simulation results indicate that the O-D matrix under 45,000 

vehicles per hour O-D demand produced the best estimates. The SSE discrepancy 

between the GA optimization (2.63E+07) and the PARAMICS simulation runs 

(2.83E+07) were significantly reduced. Here, we can watch that the third step further 

reduced the discrepancy. 

 

5.4 SUMMARY 

As shown in Tables 8 and 10, the SSE measures based estimated link flows from the 

PARAMICS simulation and actual observed link counts indicate that GA method 

outperforms QUEENSOD method. The results of estimated OD and observed actual 

comparisons of GA-based method and QUEENSOD method are shown in Figure 31.  

 

 

(a) QUEENSOD method (SSE = 4.61E+07) 
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(b) GA method (SSE = 2.83E+07) 

Figure 31. Comparison of Estimated Link Flows vs. Observed Link Flows 

Note: the estimated link flows obtained from the PARAMICS simulation runs under 

optimal O-D matrix 
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CHAPTER 6 

CONCLUSIONS AND 

RECOMMENDATIONS 
 

6.1 CONCLUSIONS 

In this study, a development of ITS test-bed using microscopic traffic simulation was 

presented. The major contributions of this study are i) presenting traffic simulation 

network building process and the efforts to improve its reliability, ii) development of API 

for coordinated actuated signal control, iii) coupling dynamic O-D estimation and traffic 

simulation model, and iv) proposing a new approach based on GA for the dynamic O-D 

estimation problem. 

The proposed methodology was demonstrated through a case study for a City of 

Hampton network. The test-bed development involved three major steps. These are 

building a basic traffic simulation network, the API for coordinated actuated signal 

control, and the dynamic O-D estimation for the network.  
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During the network building, lots of unexpected problems such as unrealistic 

behaviors of individual vehicle in specific locations and unacceptable huge congestions 

in ramps or intersections were encountered. These were identified through simulation 

model visualization. Based on the visualization, these problems were removed by 

adjusting changing “next lane” setting and/or parameters for “signposting.” It was 

concluded that the simulation model need to be verified using visualization before 

implementing for any evaluations.  

As the PARAMICS program does not provide coordinated actuated signal 

control, an API was developed as part of the simulation test-bed for ITS evaluation. The 

process of API development involved the use of dummy phases to realize NEMA dual-

ring control. It was also found that the yellow time interval in the PARAMICS program is 

a network variable such that each intersection could not have varying yellow time 

interval. Furthermore, whenever a phase skip occurs, yellow time of that phase was not 

recalled. Thus, the proposed API uses effective green time such that issue of yellow time 

was resolved.  

One of the critical elements in the implementation of a large-scale simulation 

model is to use an appropriate O-D matrix. Two practical methods, QUEENSOD and 

genetic algorithm, were considered. The GA-based O-D estimation model was developed 

in this project. A series of evaluation runs were made to obtain optimal GA parameters, 

representations and settings. The QUEENSOD method was implemented as is practiced 

in the literature. One enhancement made in this research during O-D matrix estimation is 

the use of assignment matrix. The O-D estimation was conducted over a series of steps. 

Each step develops optimal O-D matrix for a given assignment matrix. The assignment 
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matrix was updated through a microscopic simulation program using an optimal O-D 

found at the end of each step. Thus, both O-D matrix and assignment matrix are updated 

until the discrepancies between estimated link volumes from assignment matrix and 

microscopic simulation are acceptable. Note that both link volumes were produced from 

an optimal O-D at the end of each step. The results of two O-D estimation models 

indicated that the GA-based model outperformed QUEENSOD model. It was shown that 

the GA-based dynamic O-D estimation method has greater potential for estimating a 

better O-D matrix for a large scale and congested network. In the case study, the 

QUEENSOD method showed some limitations in finding a global solution.  

 

6.2 RECOMMENDATIONS 

Based on the findings and lessons learned during this research, the following 

recommendations were made: 

1. It appears that microscopic simulation programs play an important role in the 

evaluation and testing of various ITS functions and other applications. It is 

recommended that the test-bed developed in this research be used in comparison of 

alternatives, estimation of impacts and sensitivity analysis for ITS deployments 

related to the following ITS user services: pre-trip travel Information, route 

guidance, traffic control, travel demand management, emissions testing and 

mitigation, and so on. In addition, it can evaluate evacuation scenarios and signal 

coordination for the entire city.  
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2. The dynamic O-D estimation methods used in this study utilize a multi-step 

approach. Since the O-D estimation is assumed to start from a uniform O-D matrix, 

the first step is intended to find a reasonable assignment matrix. Through the case 

study using both the GA method and the QUEENSOD method, the use of improved 

assignment matrix, in which estimated after first step, showed better dynamic O-D 

estimations. 

3. The case study conducted in this research should be useful in the development of 

similar a simulation-based test-bed because the lessons learned could reduce trial-

and-errors and efforts needed. Especially, the newly developed API for coordinated 

and actuated signal control could be applied to other signalized intersections with a 

minimal updates.  

4. Both the GA and the QUEENSOD methods only used link volume information. 

Future study should consider the use of turning movement counts such that the 

discrepancies between estimated and observed link counts be quickly reduced. This 

could be achieved by adjusting the fitness function in the GA model. Furthermore, 

the GA model could include network delays or congestion levels for its criteria for 

dynamic O-D estimation by changing its evaluation function. 
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APPENDIX A - PHASE SEQUENCE OF 25 ORDERS IN API 
Table A. Phase Sequences by Order Number in API 

Order Num. Phase #1 Phase #2 Phase #3 Phase #4 

1 
    

2 
    

3 
    

4 
    

5 
   

 

6 
    

7 
    

8 
    

9 
    

10 
   

 

11 
    

12 
    

13 
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Table A. Phase Sequences by Order Number in API (continuous) 

Order Num. Phase #1 Phase #2 Phase #3 Phase #4 

14 
    

15 
   

 

16 
    

17 
    

18 
    

19 
    

20 
   

 

21 
   

 

22 
   

 

23 
   

 

24 
   

 

25 
  

  

* Overlap phases are not represented in this table. 
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APPENDIX B - INPUT FILES OF API FOR COORDINATED 

ACTUATED SIGNAL CONTROLLER 
 

3

2

5 4

1

Approach “0”

Approach “1”

Approach “2”

Approach “3”

Detector  “1”

Detector  “4”

Detector  “3”

Detector  “2”

 

Figure B-1. Layout of Example Intersection 
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Appendix B-1. Example of “priorities” File for Order #1  

 
actions 1 
phase offset 0.00 sec 
phase 1 
 75.00 
 max 180.00 
red phase 3.00 
fill 
all barred except 
from 3 to 5 major  
from 5 to 3 major  
from 3 to 2 minor  
from 5 to 4 minor  
phase 2 
 11.00 
 max 11.00 
red phase 3.00 
fill 
all barred except 
from 2 to 3 major  
from 4 to 5 major  
from 3 to 2 minor  
from 5 to 4 minor  
phase 3 
 0.00 
 max 11.00 
red phase 0.00 
fill 
all barred except 
from 2 to 3 major  
from 2 to 4 major  
from 2 to 5 minor  
from 3 to 2 minor  
phase 4 
 0.00 
 max 3.00 
red phase 0.00 
fill 
all barred except 
from 2 to 4 major  
from 2 to 5 minor  
from 3 to 2 minor  
phase 5 
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 5.00 
 max 19.00 
red phase 3.00 
fill 
all barred except 
from 4 to 2 major  
from 4 to 5 major 
from 4 to 3 minor  
from 5 to 4 minor  
phase 6 
 0.00 
 max 3.00 
red phase 0.00 
fill 
all barred except 
from 4 to 2 major  
from 4 to 3 minor  
from 5 to 4 minor  
phase 7 
 47.00 
 max 180.00 
red phase 3.00 
fill 
all barred except 
from 2 to 4 major  
from 4 to 2 major  
from 2 to 5 minor  
from 4 to 3 minor  
phase 8 
 15.00 
 max 180.00 
red phase 3.00 
fill 
all barred except 
from 3 to 4 major  
from 5 to 2 major  
from 2 to 5 minor  
from 4 to 3 minor  
phase 9 
 0.00 
 max 180.00 
red phase 0.00 
fill 
all barred except 
from 5 to 2 major  
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from 5 to 3 major  
from 2 to 5 minor  
from 5 to 4 minor  
phase 10 
 0.00 
 max 3.00 
red phase 0.00 
fill 
all barred except 
from 5 to 3 major  
from 2 to 5 minor  
from 5 to 4 minor  
phase 11 
 9.00 
 max 180.00 
red phase 3.00 
fill 
all barred except 
from 3 to 4 major  
from 3 to 5 major  
from 3 to 2 minor  
from 4 to 3 minor  
phase 12 
 0.00 
 max 3.00 
red phase 0.00 
fill 
all barred except 
from 3 to 5 major  
from 3 to 2 minor  
from 4 to 3 minor  
phase 13 
 0.00 
 max 77.00 
red phase 0.00 
fill 
all barred except 
from 3 to 5 major  
from 5 to 3 major 
from 3 to 2 minor  
from 5 to 4 minor  
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Appendix B-2. Input Data for Order #1  

struct intersections 
{ 
 int node_name; //Node number used in PARAMICS Zoom Window 
 int node_n;  //Node number used in API 
 void *Nodep; //Point variable for node 
 int order;  //Phase order number 
 int cycle;  //Cycle length 
 int major_dir; //East and westbound: 1, north and southbound: 0 
 int major[2]; //Major approach numbers 
 int minor[2]; //Minor approach numbers 
 int n_approach; //The number of approaches 
 int   detector_ID[3]; //Detector IDs 
 int   n_left_lane; //The number of left lanes 
 int   left_lanes[3]; //Left lane number 
 int   n_through_lane; //The number of through lanes 
 int   through_lanes[5];//Though lane number 
 int NEMA[13][2]; //NEMA Phase numbering of movements used in 13 PARAMICS Phases 
 int NEMA_app[2][8];//Approach number for each NEMA phase number according to “major_dir”  
 int n_actual_p; //The number of phases actual and overlap phases 
 int n_used_p; //The number of all phases 
 int actual_p[13]; //Actual phase number  
 int next_p[13]; //Next phase number  
 int n_p_app[13]; //The number of approaches that use each phase 
 int    p_app[13][2]; //Approach number that use each phase 
 int overlap[13]; //Indicator for overlap phase 
 float stored_g[13]; //stored green time for each phase 
 float min_g[13]; //minimum green time for each phase 
 float max_g[13]; //maximum green time for each phase 
 float stored_r[13]; //stored all-red time for each phase 
 float proper_r[13]; //All-red time to be assigned to dummy phases 
 float ext[13]; //Extension time 
 int cur_p;  //Current phase number 
 int pre_p;  //Previous phase number 
 int ori_p;  //Original phase number during extension of the coordinated phase 
 int cur_time; //Current simulation time 
 float gaptime_l[4]; //gap time for four left-turns  
 int call_l[4]; //Existence of demand call for four left-turns 
 float gaptime_t[4]; //gap time for four through movements 
 int call_t[4]; //Existence of demand call for four through movements 
 float forceoff[13]; //Thirteen Force-off points  
 float no_permissive_time[13];//Length of permissive period times for 13 phases 
 int first_run; //flag 
 int is_first_r; //flag 
 int actuated[3]; //flag 
 int permissive; //flag 
 int is_permissive; //flag 
 int per_first_time; //flag 
}; 
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6,               
2,               
NULL,               
13,               
125,               
1,               
1, 3,              
0, 2,              
4,               
1, 2, 3, 2, 5, 6, 0, 3, 2, 3, 4, 0, 0,   
4, 5, 6, 1, 4, 0, 0, 2, 2, 3, 0, 0, 0,   
7, 8, 9, 2, 4, 5, 0, 3, 1, 2, 3, 0, 0,   
10, 11, 12, 1, 4, 0, 0, 2, 2, 3, 0, 0, 0,   
2, 6, 1, 6, 1, 6 4, 7 4, 8, 8, 0, 3, 8, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 
0, 2, 1, 3, 2, 0, 3, 1,        
1, 3, 2, 0, 3, 1, 0, 2,        
5,               
8,               
1, 2, 3, 4, 5, 6, 7, 8, 0, 0, 0, 0, 0,   
2, 3, 6, 0, 0, 7, 1, 0, 0, 0, 0, 0, 0,   
2, 1, 1, 2, 1, 1, 1, 2, 0, 0, 0, 0, 0,   
1, 3 1, 0 0, 0 0, 0 0, 0 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 1, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,   
20, 20, 20, 0, 0, 20, 20, 0, 0, 0, 0, 0, 0,   
10, 10, 10, 0, 0, 10, 10, 0, 0, 0, 0, 0, 0,   
100, 100, 100, 100, 5, 100, 100, 100, 0, 0, 0, 0, 0,   
5, 5, 5, 0, 0, 5, 5, 0, 0, 0, 0, 0, 0,   
5, 5, 5, 5, 0, 5, 5, 0, 0, 0, 0, 0, 0,   
3, 3, 3, 3, 0, 3, 3, 0, 0, 0, 0, 0, 0,   
0,               
0,               
0,               
0,               
0, 0, 0, 0,            
0, 0, 0, 0,            
0, 0, 0, 0,            
0, 0, 0, 0,            
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,   
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,   
1,               
1,               
0, 0, 0,             
0,               
0,               
1,               
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APPENDIX C - SOLUTION DECODING CONCEPTS IN THE GA 
Appendix C-1. Decoding Example for Solution Representation 1 

∑

∑

∑

×

×

×=

j

i

dt

z[1][j][3]
z[1][2][3]

y[i][3]
y[1][3]

x[dt]
x[3] TT[1][2][3]

    (1) 

where, 

T  = given total O-D demand, 
T[i][j][dt] = trip leaving origin i to destination j during 
   departure time interval dt, 
x[dt]  = parameters in the first group of a solution,  
   the parameters are used to divide a given total O-D demand  

into four total O-D demands during each four 15-minute 
departure time intervals (dt), the number of the parameters 
is equal to ndt. 

y[i][dt]  = parameters in the second group of a solution,  
   the parameters are used to divide four total    

  15-minute interval O-D demands into the total of  
   trips leaving from i during dt, the number of the  
   parameter is equal to ni ×ndt, 
z[i][j][dt] = parameters in the third group of a solution, i ≠ j,  

  the parameters are used to divide the total of trips   
   generated from i during dt into trips leaving from  

  i to j during dt, the number of the parameters is  
   equal to ni × (nj-1) × ndt, 
i  = origin, 1 < i < ni (the number of zones: 50), 
j  = destination, 1 < j < nj (the number of zones: 50), and 
dt  = departure time interval, 1 < dt < ndt (the number  

    of departure time intervals: 4). 
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Appendix C-2. Decoding Example for Solution Representation 2 

• Trips generated from external zones 

z[1][2][3]

y[1][j]
y[1][2] [1]T~T[1][2][3]

j

×

×=
∑     (2) 

• Trips generated from internal zones 

z[8][2][3]

y[8][j]
y[8][2]

x[i]
x[8] [i]T~-TT[8][2][3]

j

IZi
EZi

×

×

×




=

∑

∑∑
∈

∈

   (3) 

where, 

 [i]T~   = observed trip leaving origin i, i∈  EZ, 
x[i]  = parameters in the first group of a solution,  
   the parameters are used to divide a given total    
   O-D demand into the total of trips leaving from i,  

 the number of the parameter is equal to ni - nEZ, 
y[i][j]  = parameters in the second group of a solution,  
   the parameters are used to divide trips leaving  

  from i into trips leaving from i to j, the number of  
  the parameter is equal to ni × (nj - 1), 

z[i][j][dt] = parameters in the third group of a solution, i ≠ j,  
the parameters are used to divide trips leaving from i to j 
into trips leaving from i to j during each four 15-minute 
departure time intervals (dt), the number of the parameters 
is equal to ni×(nj-1)× (ndt-1), dt=1,2, and 3, where, 
z[i][j][4]=1.0- (z[i][j][1]- z[i][j][2]- z[i][j][3]), 

EZ  = external zones, EZ=1, …, nEZ, nEZ is the number  
   of external zones (7), and  
IZ  = internal zones, IZ=8, …, 50, 
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Appendix C-3. Decoding Example for Solution Representation 3 

• Trips generated from external zones 

∑
×=

j
z[1][j][3]

z[1][2][3] [1][3]T~T[1][2][3]     (4) 

• Trips generated from internal zones 

∑

∑

∑∑

×

×
















×=

∈

j

i

EZi
dt

z[8][j][3]
z[8][2][3]

y[i][3]
y[8][3]

 [j][3]T~-
x[dt]

x[3]TT[8][2][3]

   (5) 

where, 

 [i][dt]T~  = observed trip leaving origin i during dt ,i∈ EZ, 
x[dt]  = parameters in the first group of a solution,  
   the parameters are used to divide a given total   

O-D demand into four total O-D demands during each four 
15-minute departure time intervals (dt), the number of the 
parameters is equal to ndt, 

y[i][dt]  = parameters in the second group of a solution,  
   the parameters are used to divide four total   
   15-minute interval O-D demands into the total of  

  trips leaving from i during dt, the number of the  
   parameter is equal to (ni – nEZ)×ndt, and 
z[i][j][dt] = parameters in the third group of a solution, i ≠ j,  

the parameters are used to divide the total of trips   
 generated from i during dt into trips leaving from  

  i to j during dt, the number of the parameters is  
   equal to ni × (nj-1) × ndt. 
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APPENDIX D - MATLAB CODES FOR QUEENSOD-BASED 

MODEL AND GA-BASED MODEL 
Appendix D-1. MATLAB Code for QUEENSOD-based Model 

%Name:  D10_step2.m 
%DynamicIter_Hampton_MDLUP.m 
%Maker: ILSOO YUN 
%Contents: QueensOD Method for time-varying OD demand for Hampton  
 
clc 
clear 
 
Files=['Results01';'Results02';'Results03';'Results04';'Results05';'Results06';'Results07';'Results08';'Results0
9';'Results10';'Results11';'Results12';'Results13';'Results14';'Results15';'Results16';'Results17';'Results18';'R
esults19';'Results20';'Results21';'Results22';'Results23';'Results24';'Results25';'Results26';'Results27';'Result
s28';'Results29';'Results30';'Results31';'Results32';'Results33';'Results34';'Results35';'Results36';'Results37';
'Results38';'Results39';'Results40';'Results41';'Results42';'Results43';'Results44';'Results45';'Results46';'Res
ults47';'Results48';'Results49';'Results50']; 
 
load('OD.mat'); 
load('MDLUP.mat'); 
load('VA.mat'); 
load P_MDLUP 
load I_MDLUP 
 
CO=[254 345 296 260; 
         389 374 421 374; 
         258 269 250 250; 
         835 757 798 789; 
         1061 1005 943 890; 
         1001 1099 1070 993; 
         1191 1085 1047 944]; 
 
tic 
%variable explanation 
%o: Origin 
%d: Destination 
%dt: Departure time; total is 4 in this case 
%t: Time Period; total is 5 in this case 
 
%Input variables explanation 
%DLUP(o,d,dt,k,t1-5); 
%OD(o,d,dt) 
%VA(k,t1-t5) 
 
%Initialization (First, I will test the test network and data set) 
n_o=50;n_d=50;n_dt=4;n_k=3340;n_t=8;PTR=5000; 
 
[low_DLUP col_DLUP]=size(MDLUP); 
 
CL=zeros(n_k,n_t); 
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CS=zeros(n_o,n_d,n_dt); 
PO=zeros(n_o,n_d,n_dt); 
CF=zeros(n_o,n_d,n_dt); 
NewOD=zeros(n_o,n_d,n_dt); 
EV1=zeros(100,4); 
EV2=zeros(100,4); 
disp('Calculating PO') 
for(o=1:n_o) 
    for(d=1:n_d) 
        if(o~=d) 
            for(dt=1:n_dt) 
                tt=P_MDLUP(1:P_MDLUP(PTR,I_MDLUP(o,d,dt)),I_MDLUP(o,d,dt)); 
                %tt=find(MDLUP(:,1)==o & MDLUP(:,2)==d & MDLUP(:,3)==dt);             
                PO(o,d,dt)=sum(sum(MDLUP(tt,5:12))); 
            end 
        end 
    end 
end 
 
for(iter=1:50) 
    iter 
    VE=zeros(n_k,n_t); 
     
    disp('Calculating temp VE') 
    for(o=1:n_o) 
        for(d=1:n_d) 
            if(o~=d) 
                for(dt=1:n_dt)% 
                    if(iter==1) 
                        tt=MDLUP(P_MDLUP(1:P_MDLUP(PTR,I_MDLUP(o,d,dt)),I_MDLUP(o,d,dt)),:); 
                        if(~isempty(tt)) 
                            [a b]=size(tt); 
                            for(iter_tt=1:a) 
                                tt(iter_tt,5:12)=tt(iter_tt,5:12).*OD(o,d,dt); 
                                 
                                VE(tt(iter_tt,4),1)=tt(iter_tt,5)+VE(tt(iter_tt,4),1); 
                                VE(tt(iter_tt,4),2)=tt(iter_tt,6)+VE(tt(iter_tt,4),2);                                     
                                VE(tt(iter_tt,4),3)=tt(iter_tt,7)+VE(tt(iter_tt,4),3); 
                                VE(tt(iter_tt,4),4)=tt(iter_tt,8)+VE(tt(iter_tt,4),4);                                     
                                VE(tt(iter_tt,4),5)=tt(iter_tt,9)+VE(tt(iter_tt,4),5);        
                                VE(tt(iter_tt,4),6)=tt(iter_tt,10)+VE(tt(iter_tt,4),6);        
                                VE(tt(iter_tt,4),7)=tt(iter_tt,11)+VE(tt(iter_tt,4),7);        
                                VE(tt(iter_tt,4),8)=tt(iter_tt,12)+VE(tt(iter_tt,4),8);                                        
                            end 
                        end 
                    else 
                        tt=MDLUP(P_MDLUP(1:P_MDLUP(PTR,I_MDLUP(o,d,dt)),I_MDLUP(o,d,dt)),:);                         
                        if(~isempty(tt)) 
                            [a b]=size(tt); 
                            for(iter_tt=1:a) 
                                tt(iter_tt,5:12)=tt(iter_tt,5:12).*NewOD(o,d,dt); 
                                VE(tt(iter_tt,4),1)=tt(iter_tt,5)+VE(tt(iter_tt,4),1); 
                                VE(tt(iter_tt,4),2)=tt(iter_tt,6)+VE(tt(iter_tt,4),2);                                     
                                VE(tt(iter_tt,4),3)=tt(iter_tt,7)+VE(tt(iter_tt,4),3); 
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                                VE(tt(iter_tt,4),4)=tt(iter_tt,8)+VE(tt(iter_tt,4),4);                                     
                                VE(tt(iter_tt,4),5)=tt(iter_tt,9)+VE(tt(iter_tt,4),5);        
                                VE(tt(iter_tt,4),6)=tt(iter_tt,10)+VE(tt(iter_tt,4),6);        
                                VE(tt(iter_tt,4),7)=tt(iter_tt,11)+VE(tt(iter_tt,4),7);        
                                VE(tt(iter_tt,4),8)=tt(iter_tt,12)+VE(tt(iter_tt,4),8);   
                            end 
                        end 
                    end 
                end 
            end 
        end 
    end 
     
     
    disp('Calculating VE and CL') 
    for(k=1:n_k) 
        for(t=1:4) 
            VE(k,t)=0.973*VE(k,t+4)+VE(k,t); 
        end 
        for(t=5:6) 
            VE(k,t)=VE(k,t)+0.827*VE(k,t-4); 
        end         
    end         
     
    for(k=1:n_k) 
        for(t=1:6) 
            if(VE(k,t)~=0) 
                CL(k,t)=VA(k,t)/VE(k,t); 
            else 
                CL(k,t)=1.0; 
            end 
        end 
    end     
     
    disp('Calculating CS')  
    CS_tmp=MDLUP(:,1:10); 
     
    for(iter1=1:low_DLUP) 
        for(t=1:6) 
            CS_tmp(iter1,t+4)=CS_tmp(iter1,t+4)*CL(MDLUP(iter1,4),t); 
        end 
    end 
 
    for(o=1:n_o) 
        for(d=1:n_d) 
            if(o~=d) 
                for(dt=1:n_dt) 
                    tt=P_MDLUP(1:P_MDLUP(PTR,I_MDLUP(o,d,dt)),I_MDLUP(o,d,dt));                                
                    tmp1=CS_tmp(tt,4:10); 
                    [low_tmp1, col_tmp1]=size(tmp1); 
                    tmp2=zeros(low_tmp1,3); 
                    tmp2(:,1)=tmp1(:,1); 
                    tmp2(:,2)=tmp1(:,2)+tmp1(:,3)+tmp1(:,4)+tmp1(:,5)+tmp1(:,6)+tmp1(:,7); 
                    tmp3=zeros(low_tmp1,2); 
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                    for kkk=1:low_tmp1 
                        flag=0; 
                        if(kkk==1) 
                            tmp3(kkk,1:2)=tmp2(kkk,1:2); 
                            flag=1;         
                        elseif(kkk==low_tmp1) 
                            if(tmp2(kkk,3)~=1) 
                                tmp3(kkk,1:2)=tmp2(kkk,1:2); 
                                flag=0;             
                            end         
                        else 
                            if(tmp2(kkk,3)~=1) 
                                tmp3(kkk,1:2)=tmp2(kkk,1:2); 
                                flag=1;             
                            end 
                        end 
                        if(flag==1) 
                            for(ttt=kkk+1:low_tmp1) 
                                if(tmp3(kkk,1)==tmp2(ttt,1)) 
                                    tmp3(kkk,2)=tmp3(kkk,2)+tmp2(ttt,2); 
                                    tmp2(ttt,3)=1; 
                                end 
                            end 
                        end 
                    end 
                     
                    a=prod(tmp3(find(tmp3(:,2)~=0),2));                     
                    CS(o,d,dt)=a; 
                end 
            end 
        end 
    end 
    clear CS_tmp; 
     
    disp('Calculating CF') 
    for(o=1:n_o) 
        for(d=1:n_d) 
            for(dt=1:n_dt) 
                if(PO(o,d,dt)==0) 
                    CF(o,d,dt)=0; 
                else 
                    CF(o,d,dt)=CS(o,d,dt).^(1./PO(o,d,dt)); 
                end 
            end 
        end 
    end 
     
    disp('Calculating NewOD') 
    if(iter==1) 
        NewOD(:,:,:)=OD(:,:,:).*CF(:,:,:); 
        for(ii=1:7) 
            for(jj=1:4) 
                r=CO(ii,jj)/sum(NewOD(ii,:,jj)) 
                for(kk=1:50) 



 

 

 

123 

                    NewOD(ii,kk,jj)=r*NewOD(ii,kk,jj); 
                end 
            end 
        end 
    else 
        NewOD(:,:,:)=NewOD(:,:,:).*CF(:,:,:); 
        for(ii=1:7) 
            for(jj=1:4) 
                r=CO(ii,jj)/sum(NewOD(ii,:,jj)); 
                for(kk=1:50) 
                    NewOD(ii,kk,jj)=r*NewOD(ii,kk,jj); 
                end 
            end 
        end 
    end 
      
    disp('Calculating MARE...')     
    tt=find(VA(:,1)~=0); 
    [a b]=size(tt); 
    EV1(iter,1)=(sum(abs(VA(tt,1)-VE(tt,1))./VA(tt,1))/a)*100;  
    EV1(iter,2)=(sum(abs(VA(tt,2)-VE(tt,2))./VA(tt,2))/a)*100;  
    EV1(iter,3)=(sum(abs(VA(tt,3)-VE(tt,3))./VA(tt,3))/a)*100; 
    EV1(iter,4)=(sum(abs(VA(tt,4)-VE(tt,4))./VA(tt,4))/a)*100;  
    EV1(iter,5)=(EV1(iter,1)+EV1(iter,2)+EV1(iter,3)+EV1(iter,4))/4 
 
    EV2(iter,1)=sum((VA(tt,1)-VE(tt,1)).^2);  
    EV2(iter,2)=sum((VA(tt,2)-VE(tt,2)).^2);  
    EV2(iter,3)=sum((VA(tt,3)-VE(tt,3)).^2);  
    EV2(iter,4)=sum((VA(tt,4)-VE(tt,4)).^2);              
    EV2(iter,5)=(EV2(iter,1)+EV2(iter,2)+EV2(iter,3)+EV2(iter,4))/4   
 
    clear VE_tmp; 
    save(Files(iter,:),'NewOD','VE','VA','EV1','EV2'); 
     
end 
 
toc 
disp('The Program ends...'); 
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Appendix D-2. MATLAB Code for GA-based Model 

1. Main M-File 

% gen_S3GA7.m 
% This script demonstrates the use of the binary genetic algorithm 
 
clc;clear;close all 
format long; 
 
global n_z; %the number of zones 
global n_l; %the number of links 
global n_dt; %the number of departure times 
global n_t; %the number of time periods 
global MDLUP; 
global I_MDLUP; 
global P_MDLUP; 
global VA; 
global MAX_f; 
 
n_z=50; %the number of zones 
n_l=3340; %the number of links 
n_dt=4; %the number of departure times 
n_t=8; %the number of time periods 
MAX_f=1.0e+15; 
 
disp('Data Loading...'); 
load vlb.mat; 
load vub.mat; 
load bits.mat; 
load MDLUP.mat; 
load I_MDLUP.mat; 
load P_MDLUP.mat; 
load VA.mat; 
 
a=inputdlg('Mutation Probability?','Mutation Selection',1,{'0.05'}); 
M=str2num(char(a)); 
clear a 
 
a=inputdlg('Population size?','Population Selections',1,{'200'}); 
P=str2num(char(a)); 
clear a 
 
a=inputdlg('Generation Number?','Max. Generation  Selections',1,{'50'}); 
G=str2num(char(a)); 
clear a 
 
a=inputdlg('Total OD?','Total OD Selections',1,{'45000'}); 
TotalOD=str2num(char(a)); 
OutFile=char(a); 
clear a; 
 
MOE=1;%SSE 
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options = foptions(1); 
options(11) = P; %Population size        
options(12) = 0.5;% Default Pc 
options(13) = M; %Mutation probability 
options(14) = G; %Generation Number 
options(2) = 0.00001; %Termination condition (no improvement in the Best) 
options(3) = 0.00001; %Termination condition (no difference between the Best and mean) 
 
[x,stats_sse,stats_mape,options,bf,lg] = genetic082('funn72',[],options,vlb,vub,bits,TotalOD,MOE); 
 
clear MDLUP; 
clear I_MDLUP; 
clear P_MDLUP; 
OutFileName = ['SSE' OutFile]; 
save(OutFileName); 
disp(''); 
disp(''); 
disp('                      !!!!!!! Matlab Running(GA) is over -- Thank you') 
 
 

2. Function for GA Generation  

function [xopt_pop,stats_sse,stats_mape,options,bestf,lgen] = genetic082(fun, ... 
                x0,options,vlb,vub,bits,P1,P2,P3,P4,P5,P6,P7P,P8,P9,P10) 
 
global MAX_f; 
OPT_STOP = 0; 
 
% Argument and error checking 
if nargin<4, 
    error('No population bounds given.') 
elseif (size(vlb,1)~=1) | (size(vub,1)~=1), 
    % Remark: this will change if algorithm accomodates matrix variables 
    error('VLB and VUB must be row vectors') 
elseif (size(vlb,2)~=size(vub,2)), 
    error('VLB and VUB must have the same number of columns.') 
elseif (size(vub,2)~=size(x0,2)) & (size(x0,1)>0), 
    error('X0 must all have the same number of columns as VLB and VUB.') 
elseif any(vlb>vub), 
    error('Some lower bounds greater than upper bounds') 
else 
    x0_row = size(x0,1); 
    for i=1:x0_row, 
        if any(x0(x0_row,:)<vlb) | any(x0(x0_row,:)>vub), 
            error('Some initial population not within bounds.') 
        end % if initial pop not within bounds 
    end % for initial pop 
end % if nargin<4    
 
if nargin<6, 
    bits = []; 
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elseif (size(bits,1)~=1) | (size(bits,2)~=size(vlb,2)), 
    % Remark: this will change if algorithm accomodates matrix variables 
    error('BITS must have one row and length(VLB) columns') 
elseif any(bits~=round(bits)) | any(bits<1), 
    error('BITS must be a vector of integers >0') 
end % if nargin<6 
 
% Form string to call for function evaluation 
if ~( any(fun<48) | any(fun>122) | any((fun>90) & (fun<97)) | ... 
        any((fun>57) & (fun<65)) ),  
    % Only alphanumeric implies must be a function 
    evalstr = [fun '(x']; 
    for i=1:nargin-6, 
        evalstr = [evalstr,',P',int2str(i)]; 
    end 
    evalstr = [evalstr, ')']; 
else 
    evalstr = fun; 
end 
 
% Determine all options 
% Remark: add another options index for type of termination criterion 
if size(options,1)>1, 
    error('OPTIONS must be a row vector') 
else 
    options = foptions(options); 
    if options(11)==0, 
        % Default size_pop  
        options(11) = 1000; 
    end 
    if options(12)==0, 
        % Default Pc 
        options(12) = 0.5; 
    end 
    if options(14)==0, 
        % Default max_gen 
        options(14) = 50; 
    end 
end 
PRINTING = options(1); 
terminate = options(2); 
terminate_mean = options(3); 
size_pop = options(11); 
Pc = options(12); 
Pm = options(13); 
max_gen  = options(14); 
% Ensure valid options: e.q. Pc,Pm,size_pop,max_gen>0, Pc,Pm<1 
if any([Pc Pm size_pop max_gen]<0) | any([Pc Pm]>1), 
    error('Some Pc,Pm,size_pop,max_gen<0 or Pc,Pm>1') 
end 
 
% Encode fitness function if necessary 
ENCODED = any(any(([vlb; vub; x0]~=0) & ([vlb; vub; x0]~=1))) |  ... 
    ~isempty(bits); 
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if ENCODED, 
    [fgen,lchrom] = encode_5(x0,vlb,vub,bits);  
else 
    fgen = x0; 
    lchrom = size(vlb,2); 
end 
clear x0 
 
% Display warning if odd number in initial population 
if rem(size_pop,2)==1, 
    disp('Warning: pop_size should be even.  Adding 1 to population.') 
    size_pop = size_pop +1; 
end 
 
%disp('Form random initial population if not enough supplied by user'); 
if size(fgen,1)<size_pop, 
    fgen = [fgen; int8(rand(size_pop-size(fgen,1),lchrom)<0.5)];% fgen <--- int8 
end 
 
xopt_pop = vlb; 
bestf = Inf; 
new_gen = fgen;% new_gen <--- int8 
clear fgen; 
 
%disp('Decoding the first generation'); 
if PRINTING>=1, 
    if ENCODED, 
        fp = decode_5(new_gen,vlb,vub,bits); 
    end 
end 
 
disp('Start up main loop'); 
STOP_FLAG = 0; 
for generation = 1:max_gen+1, 
     
    options(10) = generation-1; 
     
    disp('Evaluation...'); 
    % Decode first if necessary 
    if ENCODED, 
        x_pop = decode_5(new_gen,vlb,vub,bits); 
    else 
        x_pop = new_gen; 
    end 
 
    for i=1:size_pop, 
        x = x_pop(i,:); 
        if i==size_pop, 
            OPT_STEP = 1; 
        else 
            OPT_STEP = 0; 
        end 
        [fitness1(i), fitness2(i)] = eval(evalstr); 
    end 
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    clear x; 
     
    [worst_fit,worst_index] = max(fitness1); %Finding the Worst     
    if (generation ~= 1) %Elitist Method 
        new_gen(worst_index,:) = xopt_gen; 
        fitness1(worst_index) = best_fit; 
    end 
    [best_fit,best_index] = min(fitness1); %Finding the Best 
     
    if(generation==1)   
        if(P2==1) 
            stats_sse = [best_fit max(fitness1) mean(fitness1) std(fitness1)]%Best, Worst, Mean, STD 
            stats_mape = [min(fitness2) max(fitness2) mean(fitness2) std(fitness2)]%Best, Worst, Mean, STD         
        else 
            stats_mape = [best_fit max(fitness1) mean(fitness1) std(fitness1)]%Best, Worst, Mean, STD 
            stats_sse = [min(fitness2) max(fitness2) mean(fitness2) std(fitness2)]%Best, Worst, Mean, STD         
        end             
    else 
        if(P2==1) 
            stats_sse = [stats_sse; best_fit max(fitness1) mean(fitness1) std(fitness1)] 
            stats_mape = [stats_mape; min(fitness2) max(fitness2) mean(fitness2) std(fitness2  
        else 
            stats_mape = [stats_mape; best_fit max(fitness1) mean(fitness1) std(fitness1)] 
            stats_sse = [stats_sse; min(fitness2) max(fitness2) mean(fitness2) std(fitness2)]  
        end 
    end 
     
    if best_fit < bestf, 
        bestf = best_fit; 
        xopt_pop = x_pop(best_index(1),:); 
        xopt_gen = new_gen(best_index(1),:);         
    else 
        % Remark: may want to regenerate to guarantee cost decrease 
        % Remark: be careful not to get stuck in infinite loop 
    end 
    
    save ga_tmp; 
    clear x_pop;     
     
    % Display if necessary 
    % Remark: consider alternate printing options 
    disp('                   Fitness statistics') 
    disp('Gen#        Best         Worst         Mean      Std. dev.') 
    if PRINTING>=1, 
        if(P2==1) 
            disp([sprintf('%5.0f %12.6g %12.6g ',generation-1, ... 
                stats_sse(generation,1),stats_sse(generation,2)), ... 
                sprintf('%12.6g %12.6g  ',stats_sse(generation,3), ... 
                stats_sse(generation,4))]); 
        else 
            disp([sprintf('%5.0f %12.6g %12.6g ',generation-1, ... 
                stats_mape(generation,1),stats_mape(generation,2)), ... 
                sprintf('%12.6g %12.6g  ',stats_mape(generation,3), ... 
                stats_mape(generation,4))]); 
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        end 
    end 
     
    % Check for termination 
    % Remark: No improvement in the Best and No difference between the Best and mean 
    if terminate>0, 
        if generation>10, 
            if(P2==1) 
                BEST = (stats_sse(generation-5,1)-stats_sse(generation,1))/stats_sse(generation-5,1) 
                MEAN = (stats_sse(generation,3)-stats_sse(generation,1))/stats_sse(generation,1) 
            else 
                BEST = (stats_mape(generation-5,1)-stats_mape(generation,1))/stats_mape(generation-5,1) 
                MEAN = (stats_mape(generation,3)-stats_mape(generation,1))/stats_mape(generation,1) 
            end 
            if ( (BEST < terminate) && (MEAN < terminate_mean) ) 
                STOP_FLAG = 1; 
            end 
        end 
    end 
    if STOP_FLAG | OPT_STOP, 
        fprintf('\n') 
        if STOP_FLAG, 
            disp('Genetic algorithm converged.')    
        else 
            disp('Genetic algorithm terminated by user.') 
        end 
        return 
    end 
     
    disp('Reproduce...'); 
    new_gen = normGeomSelect(new_gen,fitness1); 
     
    disp('Mate...'); 
    new_gen = mate(new_gen); 
     
    disp('Crossover...'); 
    new_gen = xover_yun(new_gen,Pc); 
     
    disp('Mutate...'); 
    new_gen = mutate_5(new_gen,Pm); 
 
    if ENCODED, 
        lgen = decode_5(new_gen,vlb,vub,bits); 
    else 
        lgen = new_gen; 
    end 
     
end % for max_gen 
 
% Maximum number of generations reached without termination 
if PRINTING>=1, 
    fprintf('\n') 
    disp('Maximum number of generations reached without termination') 
    disp('criterion met.  Either increase maximum generations') 
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    disp('or ease termination citerion.') 
end 
 
% end genetic 
 
 
3. Function for Evaluation Function 

function [f1,f2]=funn72(x,P1,P2) 
%Name: funn72.m 
%Evaluation function for Dynamic OD Estimation 
%MOEs: SSE,MAPE 
%P1->Total OD 
%P2->MOE 
 
global n_z; %the number of zones 
global n_l; %the number of links 
global n_dt; %the number of departure times 
global n_t; %the number of time periods 
global MDLUP; 
global P_MDLUP; 
global I_MDLUP; 
global VA; 
global MAX_f; 
PTR=3000;  
 
O1=1155;O2=1558;O3=1027;O4=3179;O5=3899;O6=4163;O7=4267; 
 
% disp('Making OD to be Table fotmat...'); 
SOD=zeros(n_z,1); 
ptr=1; 
for o=8:n_z 
    SOD(o)=x(ptr); 
    ptr=ptr+1; 
end 
 
TT=P1-O1-O2-O3-O4-O5-O6-O7; 
SOD(:)=(SOD(:)./sum(SOD(:)))*TT; 
SOD(1)=O1;SOD(2)=O2;SOD(3)=O3;SOD(4)=O4;SOD(5)=O5;SOD(6)=O6;SOD(7)=O7; 
 
OD_Table=zeros(n_z,n_z); 
for (o=1:n_z) 
    for (d=1:n_z) 
        if(o~=d) 
            OD_Table(o,d)=x(ptr)/100; 
            ptr=ptr+1; 
        end 
    end 
    OD_Table(o,:)=OD_Table(o,:)/sum(OD_Table(o,:))*SOD(o); 
end     
 
OD=zeros(n_z,n_z,n_dt); 
for (dt=1:3) 
    for (o=1:n_z) 
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        for (d=1:n_z) 
            if(o~=d) 
                OD(o,d,dt)=OD_Table(o,d)*x(ptr)/100; 
                ptr=ptr+1; 
            end 
        end 
    end     
end 
 
for (o=1:n_z) 
    for (d=1:n_z) 
        if(o~=d) 
            OD(o,d,4)=OD_Table(o,d)-sum(OD(o,d,1:3)); 
        end 
    end 
end 
clear x; 
 
% disp('Calculating VE...'); 
VE=zeros(n_l,n_t); 
for(o=1:n_z) 
    for(d=1:n_z) 
        if(o~=d) 
            for(dt=1:n_dt)% 
                tt=MDLUP(P_MDLUP(1:P_MDLUP(PTR,I_MDLUP(o,d,dt)),I_MDLUP(o,d,dt)),:); 
                if(~isempty(tt)) 
                    a=size(tt,1); 
                    for(iter_tt=1:a) 
                        tt(iter_tt,5:12)=tt(iter_tt,5:12).*OD(o,d,dt); 
                        VE(tt(iter_tt,4),1)=tt(iter_tt,5)+VE(tt(iter_tt,4),1); 
                        VE(tt(iter_tt,4),2)=tt(iter_tt,6)+VE(tt(iter_tt,4),2);                                     
                        VE(tt(iter_tt,4),3)=tt(iter_tt,7)+VE(tt(iter_tt,4),3); 
                        VE(tt(iter_tt,4),4)=tt(iter_tt,8)+VE(tt(iter_tt,4),4);                                     
                        VE(tt(iter_tt,4),5)=tt(iter_tt,9)+VE(tt(iter_tt,4),5);        
                        VE(tt(iter_tt,4),6)=tt(iter_tt,10)+VE(tt(iter_tt,4),6);        
                        VE(tt(iter_tt,4),7)=tt(iter_tt,11)+VE(tt(iter_tt,4),7);        
                        VE(tt(iter_tt,4),8)=tt(iter_tt,12)+VE(tt(iter_tt,4),8);                                        
                    end 
                end 
            end 
        end 
    end 
end 
 
for(k=1:n_l) 
    for(t=1:4) 
        VE(k,t)=0.973*VE(k,t+4)+VE(k,t); 
    end 
    for(t=5:6) 
        VE(k,t)=VE(k,t)+0.827*VE(k,t-4); 
    end         
end    
clear OD; 
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% disp('Calculating MOE...');     
tt=find(VA(:,1)~=0); 
N=size(tt,1); 
 
if(P2==1)%SSE 
    SSE=sum((VA(tt,1)-VE(tt,1)).^2);  
    SSE=SSE+sum((VA(tt,2)-VE(tt,2)).^2);  
    SSE=SSE+sum((VA(tt,3)-VE(tt,3)).^2);  
    SSE=SSE+sum((VA(tt,4)-VE(tt,4)).^2);      
    SSE=SSE/4;  
    f1=SSE; 
     
    MAPE=sum(abs(VA(tt,1)-VE(tt,1))./VA(tt,1))/N*100; 
    MAPE=MAPE+sum(abs(VA(tt,2)-VE(tt,2))./VA(tt,2))/N*100; 
    MAPE=MAPE+sum(abs(VA(tt,3)-VE(tt,3))./VA(tt,3))/N*100; 
    MAPE=MAPE+sum(abs(VA(tt,4)-VE(tt,4))./VA(tt,4))/N*100; 
    MAPE=MAPE/4; 
    f2=MAPE;     
else%MAPE 
    SSE=sum((VA(tt,1)-VE(tt,1)).^2);  
    SSE=SSE+sum((VA(tt,2)-VE(tt,2)).^2);  
    SSE=SSE+sum((VA(tt,3)-VE(tt,3)).^2);  
    SSE=SSE+sum((VA(tt,4)-VE(tt,4)).^2);      
    SSE=SSE/4;  
    f2=SSE; 
   
    MAPE=sum(abs(VA(tt,1)-VE(tt,1))./VA(tt,1))/N*100; 
    MAPE=MAPE+sum(abs(VA(tt,2)-VE(tt,2))./VA(tt,2))/N*100; 
    MAPE=MAPE+sum(abs(VA(tt,3)-VE(tt,3))./VA(tt,3))/N*100; 
    MAPE=MAPE+sum(abs(VA(tt,4)-VE(tt,4))./VA(tt,4))/N*100; 
    MAPE=MAPE/4; 
    f1=MAPE;     
end 
 
 
4. Function for Normalized Geometric Selection 

function[newPop] = normGeomSelect(oldPop,fitness) 
% NormGeomSelect is a ranking selection function based on the normalized 
% geometric distribution.   
 
q=0.08;     % Probability of selecting the best 
e = size(oldPop,2);   % Length of xZome, i.e. numvars+fit 
n = size(oldPop,1);   % Number of individuals in pop 
newPop = zeros(n,e);   % Allocate space for return pop 
fit = zeros(n,1);    % Allocates space for prob of select 
x=zeros(n,2);    % Sorted list of rank and id 
x(:,1) =[1:1:n]';    % To know what element it was 
fitness=fitness'; 
 
[y x(:,2)] = sort(fitness);   % Get the index after a sort 
r = q/(1-(1-q)^n);    % Normalize the distribution, q prime 
fit(x(:,2))=r*(1-q).^(x(:,1)-1);  % Generates Prob of selection  
fit = cumsum(fit);    % Calculate the cumulative prob. func 
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rNums=sort(rand(n,1));    % Generate n sorted random numbers 
fitIn=1; newIn=1;    % Initialize loop control 
while newIn<=n     % Get n new individuals 
  if(rNums(newIn)<fit(fitIn))    
    newPop(newIn,:) = oldPop(fitIn,:);  % Select the fitIn individual  
    newIn = newIn+1;    % Looking for next new individual 
  else 
    fitIn = fitIn + 1;    % Looking at next potential selection 
  end 
end 
 
 
5. Function for Simple Crossover 

function [new_gen,sites] = xover_yun(new_gen,Pc) 
% XOVER  Creates a NEW_GEN from OLD_GEN using crossover. 
% [NEW_GEN,SITES] = XOVER(OLD_GEN,Pc) performs crossover 
%  procreation on pairs of OLD_GEN with probability Pc. 
%  Crossover SITES are chosen at random (re: there will be half as many SITES as there are individuals. 
 
lchrom = size(new_gen,2); 
n_col=size(new_gen,1)/2; 
 
for(i=1:n_col) 
    mask=rand(1,lchrom);     
    for(j=1:lchrom) 
        if(mask(1,j)<Pc) 
            tmp=new_gen(2*i-1,j); 
            new_gen(2*i-1,j)=new_gen(2*i,j); 
            new_gen(2*i,j)=tmp; 
        end 
    end 
end 
 
 
6. Function for Simple Mutation 

function [new_gen,mutated] = mutate_5(new_gen,Pm) 
% MUTATE Changes a gene of the OLD_GEN with probability Pm. 
% [NEW_GEN,MUTATED] = MUTATE(OLD_GEN,Pm) performs random mutation on the population 
OLD_POP.  Each gene of each individual of the population can mutate independently with probability Pm.  
Genes are assumed possess boolean alleles.  MUTATED contains the indices of the mutated genes. 
 
[n_pop lchrom] = size(new_gen); 
 
for(i=1:n_pop) 
    mutated=rand(1,lchrom);     
    for(j=1:lchrom) 
        if(mutated(j)<Pm) 
            new_gen(i,j) = int8(1-double(new_gen(i,j))); 
        end 
    end 
end 


